Fibonacci numbers which are concatenations of two repdigits

被引:36
作者
Alahmadi, Adel [1 ]
Altassan, Alaa [1 ]
Luca, Florian [1 ,2 ,3 ]
Shoaib, Hatoon [1 ]
机构
[1] King Abdulaziz Univ, Res Grp Algebra Struct & Its Applicat, Jeddah, Saudi Arabia
[2] Univ Witwatersrand, Sch Math, Johannesburg, South Africa
[3] Max Planck Inst Math, Bonn, Germany
关键词
Fibonacci numbers; repdigit; linear forms in complex logarithms;
D O I
10.2989/16073606.2019.1686439
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the only Fibonacci numbers that are concatenations of two repdigits are 13, 21, 34, 55, 89, 144, 233, 377.
引用
收藏
页码:281 / 290
页数:10
相关论文
共 14 条
[1]  
[Anonymous], 2011, P 14 INT C FIBONACCI
[2]  
Banks WD, 2005, INT MATH RES NOTICES, V2005, P1
[3]   On a conjecture about repdigits in k-generalized Fibonacci sequences [J].
Bravo, Jhon J. ;
Luca, Florian .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (3-4) :623-639
[4]   On integers with identical digits [J].
Bugeaud, Y ;
Mignotte, M .
MATHEMATIKA, 1999, 46 (92) :411-417
[5]   Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers [J].
Bugeaud, Yann ;
Mignotte, Maurice ;
Siksek, Samir .
ANNALS OF MATHEMATICS, 2006, 163 (03) :969-1018
[6]   A generalization of a theorem of Baker and Davenport [J].
Dujella, A ;
Petho, A .
QUARTERLY JOURNAL OF MATHEMATICS, 1998, 49 (195) :291-306
[7]  
Luca F., 2000, Quaest. Math, V23, P389, DOI [10.2989/16073600009485986, DOI 10.2989/16073600009485986]
[8]  
Luca F., 2000, Portugaliae Math, V57, P243
[9]  
Luca F, 2012, MATH COMMUN, V17, P1
[10]  
Marques D., 2012, Rend. Istit. Mat. Univ. Trieste, V44, P393