Mapping Proximity Associations of Core Spindle Assembly Checkpoint Proteins

被引:11
作者
Garcia, Yenni A. [1 ]
Velasquez, Erick F. [1 ]
Gao, Lucy W. [2 ]
Gholkar, Ankur A. [1 ]
Clutario, Kevin M. [1 ]
Cheung, Keith [1 ]
Williams-Hamilton, Taylor [1 ]
Whitelegge, Julian P. [3 ,4 ]
Torres, Jorge Z. [1 ,4 ,5 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Jane & Terry Semel Inst Neurosci & Human Behav, Pasarow Mass Spectrometry Lab, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, David Geffen Sch Med, Jane & Terry Semel Inst Neurosci & Human Behav, Pasarow Mass Spectrometry Lab,Mol Biol Inst, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Mol Biol Inst, Los Angeles, CA 90095 USA
基金
美国国家卫生研究院;
关键词
spindle assembly checkpoint (SAC); BioID2; proximity labeling; protein associations; protein networks; cell division; PROTEOMIC ANALYSIS; COMPLEX; MAD2; BUB1; IDENTIFICATION; PHOSPHATASE; ACTIVATION; MECHANISMS; COMPONENTS; INHIBITION;
D O I
10.1021/acs.jproteome.0c00941
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The spindle assembly checkpoint (SAC) is critical for sensing defective microtubule-kinetochore attachments and tension across the kinetochore and functions to arrest cells in prometaphase to allow time to repair any errors before proceeding into anaphase. Dysregulation of the SAC leads to chromosome segregation errors that have been linked to human diseases like cancer. Although much has been learned about the composition of the SAC and the factors that regulate its activity, the proximity associations of core SAC components have not been explored in a systematic manner. Here, we have taken a BioID2-proximitylabeling proteomic approach to define the proximity protein environment for each of the five core SAC proteins BUB1, BUB3, BUBR1, MAD1L1, and MAD2L1 in mitotic-enriched populations of cells where the SAC is active. These five protein association maps were integrated to generate a SAC proximity protein network that contains multiple layers of information related to core SAC protein complexes, protein-protein interactions, and proximity associations. Our analysis validated many known SAC complexes and protein-protein interactions. Additionally, it uncovered new protein associations, including the ELYS-MAD1L1 interaction that we have validated, which lend insight into the functioning of core SAC proteins and highlight future areas of investigation to better understand the SAC.
引用
收藏
页码:3414 / 3427
页数:14
相关论文
共 76 条
  • [1] Bub1 autophosphorylation feeds back to regulate kinetochore docking and promote localized substrate phosphorylation
    Asghar, Adeel
    Lajeunesse, Audrey
    Dulla, Kalyan
    Combes, Guillaume
    Thebault, Philippe
    Nigg, Erich A.
    Elowe, Sabine
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [2] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [3] Báez-Saldaña A, 2004, AM J CLIN NUTR, V79, P238
  • [4] Probing the catalytic functions of Bub1 kinase using the small molecule inhibitors BAY-320 and BAY-524
    baron, Anna P.
    von Schubert, Conrad
    Cubizolles, Fabien
    Seimeister, Gerhard
    Hitchcock, Marion
    Mengel, Anne
    Schroeder, Jens
    Fernandez-Montalvan, Amaury
    von Nussbaum, Franz
    Mumberg, Dominik
    Nigg, Erich A.
    [J]. ELIFE, 2016, 5
  • [5] Bub1 is essential for assembly of the functional inner centromere
    Boyarchuk, Yekaterina
    Salic, Adrian
    Dasso, Mary
    Arnaoutov, Alexei
    [J]. JOURNAL OF CELL BIOLOGY, 2007, 176 (07) : 919 - 928
  • [6] Bradley M., 2016, J VISUALIZED EXP, V118
  • [7] Efficient proximity labeling in living cells and organisms with TurboID
    Branon, Tess C.
    Bosch, Justin A.
    Sanchez, Ariana D.
    Udeshi, Namrata D.
    Svinkina, Tanya
    Carr, Steven A.
    Feldman, Jessica L.
    Perrimon, Norbert
    Ting, Alice Y.
    [J]. NATURE BIOTECHNOLOGY, 2018, 36 (09) : 880 - +
  • [8] Proteomic Analysis of the Mammalian Katanin Family of Microtubule-severing Enzymes Defines Katanin p80 subunit B-like 1 (KATNBL1) as a Regulator of Mammalian Katanin Microtubule-severing
    Cheung, Keith
    Senese, Silvia
    Kuang, Jiaen
    Bui, Ngoc
    Ongpipattanakul, Chayanid
    Gholkar, Ankur
    Cohn, Whitaker
    Capri, Joseph
    Whitelegge, Julian P.
    Torres, Jorge Z.
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2016, 15 (05) : 1658 - 1669
  • [9] Corbett KD, 2017, PROG MOL SUBCELL BIO, V56, P429, DOI 10.1007/978-3-319-58592-5_18
  • [10] BioID-based Identification of Skp Cullin F-box (SCF)β-TrCP1/2 E3 Ligase Substrates
    Coyaud, Etienne
    Mis, Monika
    Laurent, Estelle M. N.
    Dunham, Wade H.
    Couzens, Amber L.
    Robitaille, Melanie
    Gingras, Anne-Claude
    Angers, Stephane
    Raught, Brian
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2015, 14 (07) : 1781 - 1795