Prediction of Obstructive Coronary Artery Disease from Myocardial Perfusion Scintigraphy using Deep Neural Networks

被引:5
作者
Arvidsson, Ida [1 ]
Overgaard, Niels Christian [1 ]
Astrom, Kalle [1 ]
Heyden, Anders [1 ]
Figueroa, Miguel Ochoa [2 ]
Rose, Jeronimo Frias [2 ]
Davidsson, Anette [2 ]
机构
[1] Lund Univ, Ctr Math Sci, Lund, Sweden
[2] Linkoping Univ, Dept Clin Physiol & Diagnost Radiol, Linkoping, Sweden
来源
2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) | 2021年
关键词
DIAGNOSTIC-ACCURACY; SPECT;
D O I
10.1109/ICPR48806.2021.9412674
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For diagnosis and risk assessment in patients with stable ischemic heart disease, myocardial perfusion scintigraphy is one of the most common cardiological examinations performed today. There are however many motivations for why an artificial intelligence algorithm would provide useful input to this task. For example to reduce the subjectiveness and save time for the nuclear medicine physicians working with this time consuming task. In this work we have developed a deep learning algorithm for multi-label classification based on a convolutional neural network to estimate the probability of obstructive coronary artery disease in the left anterior artery, left circumflex artery and right coronary artery. The prediction is based on data from myocardial perfusion scintigraphy studies conducted in a dedicated Cadmium-Zinc-Telluride cardio camera (D-SPECT Spectrum Dynamics). Data from 588 patients was available, with stress images in both upright and supine position, as well as a number of auxiliary parameters such as angina symptoms and age. The data was used to train and evaluate the algorithm using 5-fold cross-validation. We achieve state-of-the-art results for this task with an area under the receiver operating characteristics curve of 0.89 as average on per-vessel level and 0.95 on per-patient level.
引用
收藏
页码:4442 / 4449
页数:8
相关论文
共 50 条
[31]   Prediction of Flow-Limiting Fractional Flow Reserve in Patients With Stable Coronary Artery Disease Based on Quantitative Myocardial Perfusion Imaging [J].
Tanaka, Haruki ;
Takahashi, Teruyuki ;
Kozono, Nami ;
Tanakamaru, Yoshiki ;
Ohashi, Norihiko ;
Yasunobu, Yuji ;
Tanaka, Koichi ;
Okada, Takenori ;
Kaseda, Shunichi ;
Nakanishi, Toshio ;
Kihara, Yasuki .
AMERICAN JOURNAL OF CARDIOLOGY, 2016, 117 (09) :1417-1426
[32]   Prevalence, location, and extent of significant coronary artery disease in patients with normal myocardial perfusion imaging [J].
Yokota, Shu ;
Ottervanger, Jan Paul ;
Mouden, Mohamed ;
Timmer, Jorik R. ;
Knollema, Siert ;
Jager, Pieter L. .
JOURNAL OF NUCLEAR CARDIOLOGY, 2014, 21 (02) :284-290
[33]   Accuracy of myocardial perfusion imaging in detecting multivessel coronary artery disease: A cardiac CZT study [J].
Gimelli, Alessia ;
Liga, Riccardo ;
Duce, Valerio ;
Kusch, Annette ;
Clemente, Alberto ;
Marzullo, Paolo .
JOURNAL OF NUCLEAR CARDIOLOGY, 2017, 24 (02) :687-695
[34]   Regional CZT myocardial perfusion reserve for the detection of territories with simultaneously impaired CFR and IMR in patients without obstructive coronary artery disease: a pilot study [J].
Loïc Djaïleb ;
Nicolas De Leiris ;
Marjorie Canu ;
Olivier Phan Sy ;
Alexandre Seiller ;
Julien Leenhardt ;
Clémence Charlon ;
Marine Faure ;
Jessica Caillard ;
Alexis Broisat ;
Anne-Laure Borel ;
Sandrine Lablanche ;
Cécile Betry ;
Catherine Ghezzi ;
Gérald Vanzetto ;
Daniel Fagret ;
Laurent M. Riou ;
Gilles Barone-Rochette .
Journal of Nuclear Cardiology, 2023, 30 :1656-1667
[35]   Regional CZT myocardial perfusion reserve for the detection of territories with simultaneously impaired CFR and IMR in patients without obstructive coronary artery disease: a pilot study [J].
Djaileb, Loic ;
De Leiris, Nicolas ;
Canu, Marjorie ;
Sy, Olivier Phan ;
Seiller, Alexandre ;
Leenhardt, Julien ;
Charlon, Clemence ;
Faure, Marine ;
Caillard, Jessica ;
Broisat, Alexis ;
Borel, Anne-Laure ;
Lablanche, Sandrine ;
Betry, Cecile ;
Ghezzi, Catherine ;
Vanzetto, Gerald ;
Fagret, Daniel ;
Riou, Laurent M. ;
Barone-Rochette, Gilles .
JOURNAL OF NUCLEAR CARDIOLOGY, 2023, 30 (04) :1656-1667
[36]   Effects of Cardiovascular Rehabilitation on Myocardial Perfusion and Functional Exercise Capacity in Patients With Stable Coronary Artery Disease and Myocardial Ischemia [J].
Mazzucco, Guillermo ;
Pilon, Leonardo ;
Torres-Castro, Rodrigo ;
Lista-Paz, Ana ;
Lopez, Silvana ;
Chichizola, Nicolas ;
Zapata, Gerardo ;
Lopez, Jorge ;
Berenguel-Senen, Alejandro ;
Arbillaga-Etxarri, Ane .
JOURNAL OF CARDIOPULMONARY REHABILITATION AND PREVENTION, 2025, 45 (02) :132-138
[37]   A Multi-Modality Attention Network for Coronary Artery Disease Evaluation From Routine Myocardial Perfusion Imaging and Clinical Data [J].
Wang, Xiaohong ;
Zhang, Junmengyang ;
Teng, Xuefen ;
Aik, Kok Wei ;
Natividad, Larry ;
Cheng, Charmaine ;
Wong, Abigail Pui Choo ;
Keng, Felix Yung Jih ;
Koh, Angela S. ;
Huang, Weimin .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (05) :3272-3281
[38]   Flurpiridaz F-18 PET Myocardial Perfusion Imaging in Patients With Suspected Coronary Artery Disease [J].
Maddahi, Jamshid ;
Agostini, Denis ;
Bateman, Timothy M. ;
Bax, Jeroen J. ;
Beanlands, Rob S. B. ;
Berman, Daniel S. ;
Dorbala, Sharmila ;
V. Garcia, Ernest ;
Feldman, James ;
V. Heller, Gary ;
Knuuti, Juhani M. ;
Martinez-Clark, Pedro ;
Pelletier-Galarneau, Matthieu ;
Shepple, Benjamin ;
Tamaki, Nagara ;
Tranquart, Francois ;
Udelson, James E. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2023, 82 (16) :1598-1610
[39]   Temporal trends of stress myocardial perfusion imaging: Influence of diabetes, gender and coronary artery disease status [J].
Chhabra, Lovely ;
Ahlberg, Alan W. ;
Henzlova, Milena J. ;
Duvall, W. Lane .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2016, 202 :922-929
[40]   A New Relational Database Including Clinical Data and Myocardial Perfusion Imaging Findings in Coronary Artery Disease [J].
Megna, Rosario ;
Petretta, Mario ;
Alfano, Bruno ;
Cantoni, Valeria ;
Green, Roberta ;
Daniele, Stefania ;
Acampa, Wanda ;
Nappi, Carmela ;
Gaudieri, Valeria ;
Assante, Roberta ;
Zampella, Emilia ;
Mazziotti, Emanuela ;
Mannarino, Teresa ;
Buongiorno, Pietro ;
Cuocolo, Alberto .
CURRENT MEDICAL IMAGING, 2019, 15 (07) :661-671