The Characterization of Fixation of Ba, Pb, and Cu in Alkali-Activated Fly Ash/Blast Furnace Slag Matrix

被引:22
|
作者
Koplik, Jan [1 ]
Kalina, Lukas [1 ]
Masilko, Jiri [1 ]
Soukal, Frantisek [1 ]
机构
[1] Brno Univ Technol, Fac Chem, Mat Res Ctr, Purkynova 118, Brno 61200, Czech Republic
来源
MATERIALS | 2016年 / 9卷 / 07期
关键词
fixation; alkali-activated materials; X-ray photoelectron spectroscopy; heavy metals; ASH-BASED GEOPOLYMERS; ALTERNATIVE MATRICES; HYDRATION PRODUCTS; HAZARDOUS-WASTES; PART I; IMMOBILIZATION; METALS; STABILIZATION; CD2+; CR6+;
D O I
10.3390/ma9070533
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The fixation of heavy metals (Ba, Cu, Pb) in an alkali-activated matrix was investigated. The matrix consisted of fly ash and blast furnace slag (BFS). The mixture of NaOH and Na-silicate was used as alkaline activator. Three analytical techniques were used to describe the fixation of heavy metals-X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), and X-ray powder diffraction (XRD). All heavy metals formed insoluble salts after alkaline activation. Ba was fixed as BaSO4, and only this product was crystalline. EDS mapping showed that Ba was cumulated in some regions and formed clusters. Pb was present in the form of Pb(OH)(2) and was dispersed throughout the matrix on the edges of BFS grains. Cu was fixed as Cu(OH)(2) and also was cumulated in some regions and formed clusters. Cu was present in two different chemical states; apart from Cu(OH)(2), a Cu-O bond was also identified.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash
    Ismail, Idawati
    Bernal, Susan A.
    Provis, John L.
    Nicolas, Rackel San
    Hamdan, Sinin
    van Deventer, Jannie S. J.
    CEMENT & CONCRETE COMPOSITES, 2014, 45 : 125 - 135
  • [2] Comparison of two alkali-activated systems: mechanically activated fly ash and fly ash-blast furnace slag blends
    Marjanovic, Natasa
    Komljenovic, Miroslav
    Bascarevic, Zvezdana
    Nikolic, Violeta
    7TH SCIENTIFIC-TECHNICAL CONFERENCE ON MATERIAL PROBLEMS IN CIVIL ENGINEERING (MATBUD'2015), 2015, 108 : 231 - 238
  • [3] Early strength development and hydration of alkali-activated blast furnace slag/fly ash blends
    Shi, C
    Day, RL
    ADVANCES IN CEMENT RESEARCH, 1999, 11 (04) : 189 - 196
  • [4] External sulfate attack on alkali-activated fly ash-blast furnace slag composite
    Dzunuzovic, N.
    Komljenovic, M.
    Nikolic, V.
    Ivanovic, T.
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 157 : 737 - 747
  • [5] Characterization of ferrochrome ash and blast furnace slag based alkali-activated paste and mortar
    Omur, Tarik
    Miyan, Nausad
    Kabay, Nihat
    Birol, Burak
    Oktay, Didem
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 363
  • [6] Study on the properties of alkali-activated phosphorus slag mortar mixed with granulated blast furnace slag/fly ash
    Zhang, Yannian
    Wu, Qi
    Yang, Daokui
    Wang, Qingjie
    Qu, Zhifu
    Zhong, Yugang
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2024, 60 (04) : 1281 - 1291
  • [7] Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems
    Mejia, J. M.
    Mejia de Gutierrez, R.
    Puertas, F.
    MATERIALES DE CONSTRUCCION, 2013, 63 (311) : 361 - 375
  • [8] Effect of retarders on flow and strength development of alkali-activated fly ash/blast furnace slag composite
    Sasaki, Kenta
    Kurumisawa, Kiyofumi
    Ibayashi, Kouhei
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 216 : 337 - 346
  • [9] A mix design methodology of blast furnace slag and fly ash-based alkali-activated concrete
    Sun, Beibei
    Sun, Yubo
    Ye, Guang
    De Schutter, Geert
    CEMENT & CONCRETE COMPOSITES, 2023, 140
  • [10] Alkali-activated fly ash-blast furnace slag blend rheology: Evaluation of yield and Maxwell responses
    Kala, Kondepudi
    Subramaniam, Kolluru V. L.
    CLEANER ENGINEERING AND TECHNOLOGY, 2022, 6