Information dynamics in a model with Hilbert space fragmentation

被引:29
作者
Hahn, Dominik [1 ]
McClarty, Paul A. [1 ]
Luitz, David J. [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
关键词
MANY-BODY LOCALIZATION; STATISTICAL-MECHANICS; QUANTUM; THERMALIZATION; ENTROPY; CHAOS;
D O I
10.21468/SciPostPhys.11.4.074
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The fully frustrated ladder - a quasi-1D geometrically frustrated spin one half Heisenberg model - is non-integrable with local conserved quantities on rungs of the ladder, inducing the local fragmentation of the Hilbert space into sectors composed of singlets and triplets on rungs. We explore the far-from-equilibrium dynamics of this model through the entanglement entropy and out-of-time-ordered correlators (OTOC). The post-quench dynamics of the entanglement entropy is highly anomalous as it shows clear non-damped revivals that emerge from short connected chunks of triplets. We find that the maximum value of the entropy follows from a picture where coherences between different fragments co-exist with perfect thermalization within each fragment. This means that the eigenstate thermalization hypothesis holds within all sufficiently large Hilbert space fragments. The OTOC shows short distance oscillations arising from short coupled fragments, which become decoherent at longer distances, and a sub-ballistic spreading and long distance exponential decay stemming from an emergent length scale tied to fragmentation.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 67 条
[1]   Colloquium: Many-body localization, thermalization, and entanglement [J].
Abanin, Dmitry A. ;
Altman, Ehud ;
Bloch, Immanuel ;
Serbyn, Maksym .
REVIEWS OF MODERN PHYSICS, 2019, 91 (02)
[2]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[3]   Dynamical Typicality of Quantum Expectation Values [J].
Bartsch, Christian ;
Gemmer, Jochen .
PHYSICAL REVIEW LETTERS, 2009, 102 (11)
[4]   Possible experimental manifestations of the many-body localization [J].
Basko, D. M. ;
Aleiner, I. L. ;
Altshuler, B. L. .
PHYSICAL REVIEW B, 2007, 76 (05)
[5]   Many-Body Localization Dynamics from Gauge Invariance [J].
Brenes, Marlon ;
Dalmonte, Marcello ;
Heyl, Markus ;
Scardicchio, Antonello .
PHYSICAL REVIEW LETTERS, 2018, 120 (03)
[6]   Probing Renyi entanglement entropy via randomized measurements [J].
Brydges, Tiff ;
Elben, Andreas ;
Jurcevic, Petar ;
Vermersch, Benoit ;
Maier, Christine ;
Lanyon, Ben P. ;
Zoller, Peter ;
Blatt, Rainer ;
Roos, Christian F. .
SCIENCE, 2019, 364 (6437) :260-+
[7]  
Buca B., ARXIV200811166
[8]   Emergent SU(2) Dynamics and Perfect Quantum Many-Body Scars [J].
Choi, Soonwon ;
Turner, Christopher J. ;
Pichler, Hannes ;
Ho, Wen Wei ;
Michailidis, Alexios A. ;
Papic, Zlatko ;
Serbyn, Maksym ;
Lukin, Mikhail D. ;
Abanin, Dmitry A. .
PHYSICAL REVIEW LETTERS, 2019, 122 (22)
[9]   Lieb-Robinson bounds and out-of-time order correlators in a long-range spin chain [J].
Colmenarez, Luis ;
Luitz, David J. .
PHYSICAL REVIEW RESEARCH, 2020, 2 (04)
[10]   From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics [J].
D'Alessio, Luca ;
Kafri, Yariv ;
Polkovnikov, Anatoli ;
Rigol, Marcos .
ADVANCES IN PHYSICS, 2016, 65 (03) :239-362