Unified Real-Time Tracking and Recognition with Rotation-Invariant Fast Features

被引:63
作者
Takacs, Gabriel [1 ]
Chandrasekhar, Vijay [1 ]
Tsai, Sam [1 ]
Chen, David [1 ]
Grzeszczuk, Radek [2 ]
Girod, Bernd [1 ]
机构
[1] Stanford Univ, Informat Syst Lab, Stanford, CA 94305 USA
[2] Nokia Res Ctr, Palo Alto, CA USA
来源
2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2010年
关键词
D O I
10.1109/CVPR.2010.5540116
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a method that unifies tracking and video content recognition with applications to Mobile Augmented Reality (MAR). We introduce the Radial Gradient Transform (RGT) and an approximate RGT, yielding the Rotation-Invariant, Fast Feature (RIFF) descriptor. We demonstrate that RIFF is fast enough for real-time tracking, while robust enough for large scale retrieval tasks. At 26x the speed, our tracking-scheme obtains a more accurate global affine motion-model than the Kanade Lucas Tomasi (KLT) tracker. The same descriptors can achieve 94% retrieval accuracy from a database of 10(4) images.
引用
收藏
页码:934 / 941
页数:8
相关论文
共 28 条
  • [1] Ahonen T, 2009, LECT NOTES COMPUTER, V5575
  • [2] [Anonymous], 2006, PROC EUR C COMPUT VI
  • [3] Banerjee A, 2004, SIAM PROC S, P234
  • [4] Birchfield S, 2007, Klt: An implementation of the Kanade-Lucas-Tomasi feature tracker
  • [5] BRASNETT P, 2007, VIE JUL
  • [6] Calonder M., 2009, INT C COMP VIS ICCV
  • [7] Chandrasekhar V., 2009, CVPR
  • [8] CHANDRASEKHAR V, 2009, CVPR MIAM FLOR JUN
  • [9] Chen D. M., 2008, CD COVER DATABASE QU
  • [10] Jegou H, 2008, LECT NOTES COMPUT SC, V5302, P304, DOI 10.1007/978-3-540-88682-2_24