Hierarchical CoO microflower film with excellent electrochemical lithium/sodium storage performance

被引:69
作者
Chang, Ling [1 ]
Wang, Kai [1 ]
Huang, Liang-ai [1 ]
He, Zhishun [1 ]
Zhu, Shasha [1 ]
Chen, Miaomiao [1 ]
Shao, Haibo [1 ]
Wang, Jianming [1 ]
机构
[1] Zhejiang Univ, Dept Chem, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
SODIUM-ION BATTERIES; LONG-CYCLE-LIFE; HIGH-CAPACITY; ANODE MATERIALS; ENERGY-STORAGE; IMPEDANCE SPECTROSCOPY; RATE CAPABILITY; CO3O4; ARRAYS; NANOSHEETS;
D O I
10.1039/c7ta05027e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hierarchically nanostructured transition metal oxides are very attractive for electrochemical energy storage systems owing to the enhanced electrochemical performance induced by their unique microstructures. Herein, a hierarchical CoO microflower film is prepared by a low-temperature solvothermal method with subsequent annealing treatment. The CoO microflowers with an average size of about 6 mm consist of hexagonal nanosheets with a loose exterior layer, exhibiting a unique hierarchical micro-nanostructure. The hierarchical CoO microflower film electrode delivers a high capacity of 1297.9 mA h g(-1) after 500 cycles at 454.5 mA g(-1), manifesting superior lithium storage performance. The phenomenon of the lithium storage capacity increase during the initial 150 cycles is analyzed by comparing the galvanostatic discharge/charge voltage profiles at different cycles. For sodium storage, the CoO microflower film electrode shows a larger capacity of 277.8 mA h g(-1) after 100 cycles at a current density of 90.9 mA g(-1). Based on the physical characterization results of the cycled film electrodes, the sodium storage mechanism of CoO is clarified.
引用
收藏
页码:20892 / 20902
页数:11
相关论文
共 66 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   ZnO/CoO and ZnCo2O4 Hierarchical Bipyramid Nanoframes: Morphology Control, Formation Mechanism, and Their Lithium Storage Properties [J].
Bai, Jing ;
Wang, Kaiqi ;
Feng, Jinkui ;
Xiong, Shenglin .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (41) :22848-22857
[3]   3D Hierarchical Porous α-Fe2O3 Nanosheets for High-Performance Lithium-Ion Batteries [J].
Cao, Kangzhe ;
Jiao, Lifang ;
Liu, Huiqiao ;
Liu, Yongchang ;
Wang, Yijing ;
Guo, Zaiping ;
Yuan, Huatang .
ADVANCED ENERGY MATERIALS, 2015, 5 (04)
[4]   Ultra-High Capacity Lithium-Ion Batteries with Hierarchical CoO Nanowire Clusters as Binder Free Electrodes [J].
Cao, Kangzhe ;
Jiao, Lifang ;
Liu, Yongchang ;
Liu, Huiqiao ;
Wang, Yijing ;
Yuan, Huatang .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (07) :1082-1089
[5]   Biotemplated synthesis of three-dimensional porous MnO/C-N nanocomposites from renewable rapeseed pollen: An anode material for lithium-ion batteries [J].
Chen, Li-Feng ;
Ma, Sheng-Xiang ;
Lu, Shu ;
Feng, Yue ;
Zhang, Jia ;
Xin, Sen ;
Yu, Shu-Hong .
NANO RESEARCH, 2017, 10 (01) :1-11
[6]   Controlled synthesis of hierarchical Cu nanosheets @ CuO nanorods as high-performance anode material for lithium-ion batteries [J].
Dang, Rui ;
Jia, Xilai ;
Liu, Xin ;
Ma, Hongtu ;
Gao, Hongyi ;
Wang, Ge .
NANO ENERGY, 2017, 33 :427-435
[7]   Contribution of X-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium [J].
Dedryvère, R ;
Laruelle, S ;
Grugeon, S ;
Poizot, P ;
Gonbeau, D ;
Tarascon, JM .
CHEMISTRY OF MATERIALS, 2004, 16 (06) :1056-1061
[8]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[9]   Ultrathin NiO nanosheets anchored on a highly ordered nanostructured carbon as an enhanced anode material for lithium ion batteries [J].
Fan, Zhaoyang ;
Liang, Jin ;
Yu, Wei ;
Ding, Shujiang ;
Cheng, Shaodong ;
Yang, Guang ;
Wang, Yonglong ;
Xi, Yingxin ;
Xi, Kai ;
Kumar, R. Vasant .
NANO ENERGY, 2015, 16 :152-162
[10]   A novel hollowed CoO-in-CoSnO3 nanostructure with enhanced lithium storage capabilities [J].
Guan, Cao ;
Li, Xianglin ;
Yu, Hong ;
Mao, Lu ;
Wong, Lydia Helena ;
Yan, Qingyu ;
Wang, John .
NANOSCALE, 2014, 6 (22) :13824-13830