A Machine Learning-Based Prediction Model for Cardiovascular Risk in Women With Preeclampsia

被引:15
作者
Wang, Guan [1 ,2 ]
Zhang, Yanbo [3 ]
Li, Sijin [4 ]
Zhang, Jun [1 ]
Jiang, Dongkui [2 ]
Li, Xiuzhen [2 ]
Li, Yulin [1 ]
Du, Jie [1 ]
机构
[1] Capital Med Univ, Beijing Inst Heart Lung & Blood Vessel Dis, Key Lab Remodeling Related Cardiovasc Dis, Beijing Anzhen Hosp,Minist Educ, Beijing, Peoples R China
[2] Beijing Univ Chinese Med, Affiliated Hosp 3, Beijing, Peoples R China
[3] Shanxi Med Univ, Sch Publ Hlth, Dept Hlth Stat, Shanxi Key Lab Major Dis Risk Assessment, Taiyuan, Peoples R China
[4] Shanxi Med Univ, Hosp Shanxi Med Univ 1, Mol Imaging Precis Med Collaborat Innovat Ctr, Taiyuan, Peoples R China
来源
FRONTIERS IN CARDIOVASCULAR MEDICINE | 2021年 / 8卷
基金
中国国家自然科学基金;
关键词
preeclampsia; hypertension; cardiovascular disease; machine learning; prediction; model; CORONARY-ARTERY-DISEASE; HYPERTENSIVE DISORDERS; PREGNANCY; FUTURE; CLASSIFICATION; MANAGEMENT; DIAGNOSIS; MORTALITY;
D O I
10.3389/fcvm.2021.736491
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: Preeclampsia affects 2-8% of women and doubles the risk of cardiovascular disease in women after preeclampsia. This study aimed to develop a model based on machine learning to predict postpartum cardiovascular risk in preeclamptic women. Methods: Collecting demographic characteristics and clinical serum markers associated with preeclampsia during pregnancy of 907 preeclamptic women retrospectively, we predicted the cardiovascular risk (ischemic heart disease, ischemic cerebrovascular disease, peripheral vascular disease, chronic kidney disease, metabolic system disease or arterial hypertension). The study samples were divided into training sets and test sets randomly in the ratio of 8:2. The prediction model was developed by 5 different machine learning algorithms, including Random Forest. 10-fold cross-validation was performed on the training set, and the performance of the model was evaluated on the test set. Results: Cardiovascular disease risk occurred in 186 (20.5%) of these women. By weighing area under the curve (AUC), the Random Forest algorithm presented the best performance (AUC = 0.711[95%CI: 0.697-0.726]) and was adopted in the feature selection and the establishment of the prediction model. The most important variables in Random Forest algorithm included the systolic blood pressure, Urea nitrogen, neutrophil count, glucose, and D-Dimer. Random Forest algorithm was well calibrated (Brier score = 0.133) in the test group, and obtained the highest net benefit in the decision curve analysis. Conclusion: Based on the general situation of patients and clinical variables, a new machine learning algorithm was developed and verified for the individualized prediction of cardiovascular risk in post-preeclamptic women.
引用
收藏
页数:11
相关论文
共 36 条
  • [1] Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on coronary computed tomography angiography: analysis from the CONFIRM registry
    Al'Arefilb, Subhi J.
    Maliakal, Gabriel
    Singh, Gurpreet
    van Rosendael, Alexander R.
    Ma, Xiaoyue
    Xu, Zhuoran
    Alawamlh, Omar Al Hussein
    Lee, Benjamin
    Pandey, Mohit
    Achenbach, Stephan
    Al-Mallah, Mouaz H.
    Andreini, Daniele
    Bax, Jeroen J.
    Berman, Daniel S.
    Budoff, Matthew J.
    Cademartiri, Filippo
    Canister, Tracy Q.
    Chang, Hyuk-Jae
    Chinnaiyan, Kavitha
    Chow, Benjamin J. W.
    Cury, Ricardo C.
    DeLago, Augustin
    Feuchtner, Gudrun
    Hadamitzky, Martin
    Hausleiter, Joerg
    Kaufmann, Philipp A.
    Kim, Yong-Jin
    Leipsic, Jonathon A.
    Maffei, Erica
    Marques, Hugo
    Goncalves, Pedro de Araujo
    Pontone, Gianluca
    Raff, Gilbert L.
    Rubinshtein, Ronen
    Villines, Todd C.
    Gransar, Heidi
    Lu, Yao
    Jones, Erica C.
    Pena, Jessica M.
    Lin, Fay Y.
    Min, James K.
    Shaw, Leslee J.
    [J]. EUROPEAN HEART JOURNAL, 2020, 41 (03) : 359 - 367
  • [2] Recurrent pre-eclampsia and subsequent cardiovascular risk
    Auger, Nathalie
    Fraser, William D.
    Schnitzer, Mireille
    Leduc, Line
    Healy-Profitos, Jessica
    Paradis, Gilles
    [J]. HEART, 2017, 103 (03) : 235 - 243
  • [3] Future risk of cardiovascular disease risk factors and events in women after a hypertensive disorder of pregnancy
    Benschop, Laura
    Duvekot, Johannes J.
    van Lennep, Jeanine E. Roeters
    [J]. HEART, 2019, 105 (16) : 1273 - 1278
  • [4] Blood Pressure Profile 1 Year After Severe Preeclampsia
    Benschop, Laura
    Duvekot, Johannes J.
    Versmissen, Jorie
    van Broekhoven, Valeska
    Steegers, Eric A. P.
    van Lennep, Jeanine E. Roeters
    [J]. HYPERTENSION, 2018, 71 (03) : 491 - 498
  • [5] Hypertensive disorders of pregnancy and subsequent maternal cardiovascular health
    Bergen, Nienke E.
    Schalekamp-Timmermans, Sarah
    van Lennep, Jeanine E. Roeters
    Jaddoe, Vincent V. W.
    Steegers, Eric A. P.
    [J]. EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2018, 33 (08) : 763 - 771
  • [6] Hypertensive Disorders of Pregnancy ISSHP Classification, Diagnosis, and Management Recommendations for International Practice
    Brown, Mark A.
    Magee, Laura A.
    Kenny, Louise C.
    Karumanchi, S. Ananth
    McCarthy, Fergus P.
    Saito, Shigeru
    Hall, David R.
    Warren, Charlotte E.
    Adoyi, Gloria
    Ishaku, Salisu
    [J]. HYPERTENSION, 2018, 72 (01) : 24 - 43
  • [7] Multiple imputation was an efficient method for harmonizing the Mini-Mental State Examination with missing item-level data
    Burns, Richard A.
    Butterworth, Peter
    Kiely, Kim M.
    Bielak, Allison A. M.
    Luszcz, Mary A.
    Mitchell, Paul
    Christensen, Helen
    Von Sanden, Chwee
    Anstey, Kaarin J.
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2011, 64 (07) : 787 - 793
  • [8] Diagnostic Accuracy of a Machine-Learning Approach to Coronary Computed Tomographic Angiography-Based Fractional Flow Reserve Result From the MACHINE Consortium
    Coenen, Adriaan
    Kim, Young-Hak
    Kruk, Mariusz
    Tesche, Christian
    De Geer, Jakob
    Kurata, Akira
    Lubbers, Marisa L.
    Daemen, Joost
    Itu, Lucian
    Rapaka, Saikiran
    Sharma, Puneet
    Schwemmer, Chris
    Persson, Anders
    Schoepf, U. Joseph
    Kepka, Cezary
    Yang, Dong Hyun
    Nieman, Koen
    [J]. CIRCULATION-CARDIOVASCULAR IMAGING, 2018, 11 (06)
  • [9] Collins GS, 2015, BMJ-BRIT MED J, V350, DOI [10.1136/bmj.g7594, 10.1111/1471-0528.13244]
  • [10] A new framework to enhance the interpretation of external validation studies of clinical prediction models
    Debray, Thomas P. A.
    Vergouwe, Yvonne
    Koffijberg, Hendrik
    Nieboer, Daan
    Steyerberg, Ewout W.
    Moons, Karel G. M.
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2015, 68 (03) : 280 - 289