A Machine Learning-Based Prediction Model for Cardiovascular Risk in Women With Preeclampsia

被引:17
作者
Wang, Guan [1 ,2 ]
Zhang, Yanbo [3 ]
Li, Sijin [4 ]
Zhang, Jun [1 ]
Jiang, Dongkui [2 ]
Li, Xiuzhen [2 ]
Li, Yulin [1 ]
Du, Jie [1 ]
机构
[1] Capital Med Univ, Beijing Inst Heart Lung & Blood Vessel Dis, Key Lab Remodeling Related Cardiovasc Dis, Beijing Anzhen Hosp,Minist Educ, Beijing, Peoples R China
[2] Beijing Univ Chinese Med, Affiliated Hosp 3, Beijing, Peoples R China
[3] Shanxi Med Univ, Sch Publ Hlth, Dept Hlth Stat, Shanxi Key Lab Major Dis Risk Assessment, Taiyuan, Peoples R China
[4] Shanxi Med Univ, Hosp Shanxi Med Univ 1, Mol Imaging Precis Med Collaborat Innovat Ctr, Taiyuan, Peoples R China
来源
FRONTIERS IN CARDIOVASCULAR MEDICINE | 2021年 / 8卷
基金
中国国家自然科学基金;
关键词
preeclampsia; hypertension; cardiovascular disease; machine learning; prediction; model; CORONARY-ARTERY-DISEASE; FUTURE; DISORDERS; MORTALITY;
D O I
10.3389/fcvm.2021.736491
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: Preeclampsia affects 2-8% of women and doubles the risk of cardiovascular disease in women after preeclampsia. This study aimed to develop a model based on machine learning to predict postpartum cardiovascular risk in preeclamptic women. Methods: Collecting demographic characteristics and clinical serum markers associated with preeclampsia during pregnancy of 907 preeclamptic women retrospectively, we predicted the cardiovascular risk (ischemic heart disease, ischemic cerebrovascular disease, peripheral vascular disease, chronic kidney disease, metabolic system disease or arterial hypertension). The study samples were divided into training sets and test sets randomly in the ratio of 8:2. The prediction model was developed by 5 different machine learning algorithms, including Random Forest. 10-fold cross-validation was performed on the training set, and the performance of the model was evaluated on the test set. Results: Cardiovascular disease risk occurred in 186 (20.5%) of these women. By weighing area under the curve (AUC), the Random Forest algorithm presented the best performance (AUC = 0.711[95%CI: 0.697-0.726]) and was adopted in the feature selection and the establishment of the prediction model. The most important variables in Random Forest algorithm included the systolic blood pressure, Urea nitrogen, neutrophil count, glucose, and D-Dimer. Random Forest algorithm was well calibrated (Brier score = 0.133) in the test group, and obtained the highest net benefit in the decision curve analysis. Conclusion: Based on the general situation of patients and clinical variables, a new machine learning algorithm was developed and verified for the individualized prediction of cardiovascular risk in post-preeclamptic women.
引用
收藏
页数:11
相关论文
共 36 条
[1]   Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on coronary computed tomography angiography: analysis from the CONFIRM registry [J].
Al'Arefilb, Subhi J. ;
Maliakal, Gabriel ;
Singh, Gurpreet ;
van Rosendael, Alexander R. ;
Ma, Xiaoyue ;
Xu, Zhuoran ;
Alawamlh, Omar Al Hussein ;
Lee, Benjamin ;
Pandey, Mohit ;
Achenbach, Stephan ;
Al-Mallah, Mouaz H. ;
Andreini, Daniele ;
Bax, Jeroen J. ;
Berman, Daniel S. ;
Budoff, Matthew J. ;
Cademartiri, Filippo ;
Canister, Tracy Q. ;
Chang, Hyuk-Jae ;
Chinnaiyan, Kavitha ;
Chow, Benjamin J. W. ;
Cury, Ricardo C. ;
DeLago, Augustin ;
Feuchtner, Gudrun ;
Hadamitzky, Martin ;
Hausleiter, Joerg ;
Kaufmann, Philipp A. ;
Kim, Yong-Jin ;
Leipsic, Jonathon A. ;
Maffei, Erica ;
Marques, Hugo ;
Goncalves, Pedro de Araujo ;
Pontone, Gianluca ;
Raff, Gilbert L. ;
Rubinshtein, Ronen ;
Villines, Todd C. ;
Gransar, Heidi ;
Lu, Yao ;
Jones, Erica C. ;
Pena, Jessica M. ;
Lin, Fay Y. ;
Min, James K. ;
Shaw, Leslee J. .
EUROPEAN HEART JOURNAL, 2020, 41 (03) :359-367
[2]   Recurrent pre-eclampsia and subsequent cardiovascular risk [J].
Auger, Nathalie ;
Fraser, William D. ;
Schnitzer, Mireille ;
Leduc, Line ;
Healy-Profitos, Jessica ;
Paradis, Gilles .
HEART, 2017, 103 (03) :235-243
[3]   Future risk of cardiovascular disease risk factors and events in women after a hypertensive disorder of pregnancy [J].
Benschop, Laura ;
Duvekot, Johannes J. ;
van Lennep, Jeanine E. Roeters .
HEART, 2019, 105 (16) :1273-1278
[4]   Blood Pressure Profile 1 Year After Severe Preeclampsia [J].
Benschop, Laura ;
Duvekot, Johannes J. ;
Versmissen, Jorie ;
van Broekhoven, Valeska ;
Steegers, Eric A. P. ;
van Lennep, Jeanine E. Roeters .
HYPERTENSION, 2018, 71 (03) :491-498
[5]   Hypertensive disorders of pregnancy and subsequent maternal cardiovascular health [J].
Bergen, Nienke E. ;
Schalekamp-Timmermans, Sarah ;
van Lennep, Jeanine E. Roeters ;
Jaddoe, Vincent V. W. ;
Steegers, Eric A. P. .
EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2018, 33 (08) :763-771
[6]   Hypertensive Disorders of Pregnancy ISSHP Classification, Diagnosis, and Management Recommendations for International Practice [J].
Brown, Mark A. ;
Magee, Laura A. ;
Kenny, Louise C. ;
Karumanchi, S. Ananth ;
McCarthy, Fergus P. ;
Saito, Shigeru ;
Hall, David R. ;
Warren, Charlotte E. ;
Adoyi, Gloria ;
Ishaku, Salisu .
HYPERTENSION, 2018, 72 (01) :24-43
[7]   Multiple imputation was an efficient method for harmonizing the Mini-Mental State Examination with missing item-level data [J].
Burns, Richard A. ;
Butterworth, Peter ;
Kiely, Kim M. ;
Bielak, Allison A. M. ;
Luszcz, Mary A. ;
Mitchell, Paul ;
Christensen, Helen ;
Von Sanden, Chwee ;
Anstey, Kaarin J. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2011, 64 (07) :787-793
[8]   Diagnostic Accuracy of a Machine-Learning Approach to Coronary Computed Tomographic Angiography-Based Fractional Flow Reserve Result From the MACHINE Consortium [J].
Coenen, Adriaan ;
Kim, Young-Hak ;
Kruk, Mariusz ;
Tesche, Christian ;
De Geer, Jakob ;
Kurata, Akira ;
Lubbers, Marisa L. ;
Daemen, Joost ;
Itu, Lucian ;
Rapaka, Saikiran ;
Sharma, Puneet ;
Schwemmer, Chris ;
Persson, Anders ;
Schoepf, U. Joseph ;
Kepka, Cezary ;
Yang, Dong Hyun ;
Nieman, Koen .
CIRCULATION-CARDIOVASCULAR IMAGING, 2018, 11 (06)
[9]  
Collins GS, 2015, BMJ-BRIT MED J, V350, DOI [10.1136/bmj.g7594, 10.1111/1471-0528.13244]
[10]   A new framework to enhance the interpretation of external validation studies of clinical prediction models [J].
Debray, Thomas P. A. ;
Vergouwe, Yvonne ;
Koffijberg, Hendrik ;
Nieboer, Daan ;
Steyerberg, Ewout W. ;
Moons, Karel G. M. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2015, 68 (03) :280-289