Singularity Properties of Timelike Sweeping Surface in Minkowski 3-Space

被引:30
作者
Li, Yanlin [1 ]
Nazra, Sahar H. [2 ]
Abdel-Baky, Rashad A. [3 ]
机构
[1] Hangzhou Normal Univ, Sch Math, Hangzhou 311120, Peoples R China
[2] Umm Al Qura Univ, Coll Appl Sci, Dept Math Sci, Mecca 24382, Saudi Arabia
[3] Univ Assiut, Fac Sci, Dept Math, Assiut 71516, Egypt
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 10期
基金
中国国家自然科学基金;
关键词
local singularities; convexity; unfolding theory; Lorentzian height functions; 4-DIMENSIONAL CR SUBMANIFOLDS; RULED SURFACES; FRAME; GEOMETRY; CURVES;
D O I
10.3390/sym14101996
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we give the parametric equation of the Bishop frame for a timelike sweeping surface with a unit speed timelike curve in Minkowski 3-space. We introduce a new geometric invariant to explain the geometric properties and local singularities of this timelike surface. We derive the sufficient and necessary conditions for this timelike surface to be a timelike developable ruled surface. Afterwards, we take advantage of singularity theory to give the classification of singularities of this timelike developable surface. Furthermore, we give some representative examples to show the applications of the theoretical results.
引用
收藏
页数:17
相关论文
共 69 条
[61]  
Todorcevic V., 2019, Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics
[62]   Subharmonic behavior and quasiconformal mappings [J].
Todorcevic, Vesna .
ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (03) :1211-1225
[63]   Figures of Graph Partitioning by Counting, Sequence and Layer Matrices [J].
Tomescu, Mihaela Aurelia ;
Jantschi, Lorentz ;
Rotaru, Doina Iulia .
MATHEMATICS, 2021, 9 (12)
[64]   Inequalities for scalar curvature of pseudo-Riemannian submanifolds [J].
Tripathi, Mukut Mani ;
Gulbahar, Mehmet ;
Kilic, Erol ;
Keles, Sadik .
JOURNAL OF GEOMETRY AND PHYSICS, 2017, 112 :74-84
[65]  
Walfare, 1995, THESIS
[66]   Computation of rotation minimizing frames [J].
Wang, Wenping ;
Juettler, Bert ;
Zheng, Dayue ;
Liu, Yang .
ACM TRANSACTIONS ON GRAPHICS, 2008, 27 (01)
[67]   Robust computation of the rotation minimizing frame for sweep surface modeling [J].
Wang, WP ;
Joe, B .
COMPUTER-AIDED DESIGN, 1997, 29 (05) :379-391
[68]   Analytic and algebraic properties of canal surfaces [J].
Xu, Zhiqiang ;
Feng, Renzhong ;
Sun, Jia-guang .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 195 (1-2) :220-228
[69]   Evolving evolutoids and pedaloids from viewpoints of envelope and singularity theory in Minkowski plane [J].
Yang, Zhichao ;
Li, Yanlin ;
Erdogdu, Melek ;
Zhu, Yushu .
JOURNAL OF GEOMETRY AND PHYSICS, 2022, 176