A chromatin code for alternative splicing involving a putative association between CTCF and HP1α proteins

被引:41
作者
Agirre, Eneritz [1 ]
Bellora, Nicolas [1 ]
Allo, Mariano [2 ]
Pages, Amadis [1 ,3 ]
Bertucci, Paola [2 ]
Kornblihtt, Alberto R. [2 ]
Eyras, Eduardo [1 ,4 ]
机构
[1] Univ Pompeu Fabra, E-08003 Barcelona, Spain
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, CONICET, IFIBYNE, Buenos Aires, DF, Argentina
[3] Ctr Genom Regulat, E-08003 Barcelona, Spain
[4] Catalan Inst Res & Adv Studies ICREA, E-08010 Barcelona, Spain
关键词
Chromatin; Splicing; Histones; Splicing code; DNA-METHYLATION; HISTONE H3; CHIP-SEQ; TRANSCRIPTIONAL REGULATION; COMPUTATIONAL ANALYSIS; ARGONAUTE PROTEINS; LYSINE; 9; REVEALS; BINDING; SITES;
D O I
10.1186/s12915-015-0141-5
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Alternative splicing is primarily controlled by the activity of splicing factors and by the elongation of the RNA polymerase II (RNAPII). Recent experiments have suggested a new complex network of splicing regulation involving chromatin, transcription and multiple protein factors. In particular, the CCCTC-binding factor (CTCF), the Argonaute protein AGO1, and members of the heterochromatin protein 1 (HP1) family have been implicated in the regulation of splicing associated with chromatin and the elongation of RNAPII. These results raise the question of whether these proteins may associate at the chromatin level to modulate alternative splicing. Results: Using chromatin immunoprecipitation sequencing (ChIP-Seq) data for CTCF, AGO1, HP1 alpha, H3K27me3, H3K9me2, H3K36me3, RNAPII, total H3 and 5metC and alternative splicing arrays from two cell lines, we have analyzed the combinatorial code of their binding to chromatin in relation to the alternative splicing patterns between two cell lines, MCF7 and MCF10. Using Machine Learning techniques, we identified the changes in chromatin signals that are most significantly associated with splicing regulation between these two cell lines. Moreover, we have built a map of the chromatin signals on the pre-mRNA, that is, a chromatin-based RNA-map, which can explain 606 (68.55%) of the regulated events between MCF7 and MCF10. This chromatin code involves the presence of HP1 alpha, CTCF, AGO1, RNAPII and histone marks around regulated exons and can differentiate patterns of skipping and inclusion. Additionally, we found a significant association of HP1 alpha and CTCF activities around the regulated exons and a putative DNA binding site for HP1 alpha. Conclusions: Our results show that a considerable number of alternative splicing events could have a chromatin-dependent regulation involving the association of HP1 alpha and CTCF near regulated exons. Additionally, we find further evidence for the involvement of HP1 alpha and AGO1 in chromatin-related splicing regulation.
引用
收藏
页数:14
相关论文
共 82 条
[1]   Direct evidence of nuclear Argonaute distribution during transcriptional silencing links the actin cytoskeleton to nuclear RNAi machinery in human cells [J].
Ahlenstiel, Chantelle L. ;
Lim, Heidi G. W. ;
Cooper, David A. ;
Ishida, Takaomi ;
Kelleher, Anthony D. ;
Suzuki, Kazuo .
NUCLEIC ACIDS RESEARCH, 2012, 40 (04) :1579-1595
[2]   Chromatin and Alternative Splicing [J].
Allo, M. ;
Schor, I. E. ;
Munoz, M. J. ;
de la Mata, M. ;
Agirre, E. ;
Valcarcel, J. ;
Eyras, E. ;
Kornblihtt, A. R. .
NUCLEAR ORGANIZATION AND FUNCTION, 2010, 75 :103-111
[3]   Argonaute-1 binds transcriptional enhancers and controls constitutive and alternative splicing in human cells [J].
Allo, Mariano ;
Agirre, Eneritz ;
Bessonov, Sergey ;
Bertucci, Paola ;
Gomez Acuna, Luciana ;
Buggiano, Valeria ;
Bellora, Nicolas ;
Singh, Babita ;
Petrillo, Ezequiel ;
Blaustein, Matias ;
Minana, Belen ;
Dujardin, Gwendal ;
Pozzi, Berta ;
Pelisch, Federico ;
Bechara, Elias ;
Agafonov, Dmitry E. ;
Srebrow, Anabella ;
Luehrmann, Reinhard ;
Valcarcel, Juan ;
Eyras, Eduardo ;
Kornblihtt, Alberto R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (44) :15622-15629
[4]   Control of alternative splicing through siRNA-mediated transcriptional gene silencing [J].
Allo, Mariano ;
Buggiano, Valeria ;
Fededa, Juan P. ;
Petrillo, Ezequiel ;
Schor, Ignacio ;
de la Mata, Manuel ;
Agirre, Eneritz ;
Plass, Mireya ;
Eyras, Eduardo ;
Abou Elela, Sherif ;
Klinck, Roscoe ;
Chabot, Benoit ;
Kornblihtt, Alberto R. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2009, 16 (07) :717-U43
[5]   Pyicos: a versatile toolkit for the analysis of high-throughput sequencing data [J].
Althammer, Sonja ;
Gonzalez-Vallinas, Juan ;
Ballare, Cecilia ;
Beato, Miguel ;
Eyras, Eduardo .
BIOINFORMATICS, 2011, 27 (24) :3333-3340
[6]   Argonaute proteins couple chromatin silencing to alternative splicing [J].
Ameyar-Zazoua, Maya ;
Rachez, Christophe ;
Souidi, Mouloud ;
Robin, Philippe ;
Fritsch, Lauriane ;
Young, Robert ;
Morozova, Nadya ;
Fenouil, Romain ;
Descostes, Nicolas ;
Andrau, Jean-Christophe ;
Mathieu, Jacques ;
Hamiche, Ali ;
Ait-Si-Ali, Slimane ;
Muchardt, Christian ;
Batsche, Eric ;
Harel-Bellan, Annick .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2012, 19 (10) :998-U46
[7]   The significance of digital gene expression profiles [J].
Audic, S ;
Claverie, JM .
GENOME RESEARCH, 1997, 7 (10) :986-995
[8]  
Bailey T L, 1994, Proc Int Conf Intell Syst Mol Biol, V2, P28
[9]   Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain [J].
Bannister, AJ ;
Zegerman, P ;
Partridge, JF ;
Miska, EA ;
Thomas, JO ;
Allshire, RC ;
Kouzarides, T .
NATURE, 2001, 410 (6824) :120-124
[10]   Deciphering the splicing code [J].
Barash, Yoseph ;
Calarco, John A. ;
Gao, Weijun ;
Pan, Qun ;
Wang, Xinchen ;
Shai, Ofer ;
Blencowe, Benjamin J. ;
Frey, Brendan J. .
NATURE, 2010, 465 (7294) :53-59