Second-order constraints for equations of motion of constrained systems

被引:68
作者
Chen, YH [1 ]
机构
[1] Georgia Inst Technol, Sch Mech Engn, Atlanta, GA 30332 USA
关键词
control; Lagrangean mechanics; modeling; nonholonomic constraint;
D O I
10.1109/3516.712120
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Motivated by the Udwadia and Kalaba equation, it is suggested that one can take the advantage of the second-order form of constraint in a more global sense, The second-order form is especially useful in deriving equations of motion that are uncoupled and Lagrangean multiplier free. As a demonstration, the procedure of incorporating the second-order form into the Maggi's equation and Lagrange's equation is outlined. We consider both holonomic and nonholonomic cases.
引用
收藏
页码:240 / 248
页数:9
相关论文
共 13 条
[1]  
[Anonymous], 1899, CR HEBD ACAD SCI
[2]  
CAMPION G, 1991, LECT NOTES CONTR INF, V162, P106, DOI 10.1007/BFb0039268
[3]  
Gibbs JW., 1879, AM J MATH, V2, P49, DOI DOI 10.2307/2369196
[4]  
Hamel G, 1904, Z. Math. Phys., V50
[5]  
HAMEL G, 1949, THEORETISCHE MECH
[6]  
Maggi G.A., 1901, ATTI REALE ACAD 5 FM, VX, P287
[7]  
Neimark JI, 1972, DYNAMICS NONHOLONOMI
[8]   THE MAGGI OR CANONICAL FORM OF LAGRANGE EQUATIONS OF MOTION OF HOLONOMIC MECHANICAL SYSTEMS [J].
PAPASTAVRIDIS, JG .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1990, 57 (04) :1004-1010
[9]  
Pars L. A., 1979, A Treatise on Analytical Dynamics
[10]  
ROSENBERG RM, 1977, ANAL DYNAMICS DISCRE