Hopf bifurcation control in a coupled nonlinear relative rotation dynamical system

被引:7
作者
Liu Shuang [1 ]
Liu Hao-Ran [2 ]
Wen Yan [3 ]
Liu Bin [1 ]
机构
[1] Yanshan Univ, Key Lab Ind Comp Control Engn Hebei Prov, Qinhuangdao 066004, Peoples R China
[2] Yanshan Univ, Inst Informat Technol & Engn, Qinhuangdao 066004, Peoples R China
[3] Yanshan Univ, Inst Engn Mech, Qinhuangdao 066004, Peoples R China
关键词
relatively rotation; coupled nonlinear dynamic system; Hopf bifurcation; limit cycle; NOETHER CONSERVED QUANTITY; FORM INVARIANCE; APPROXIMATE SOLUTION; EQUILIBRIUM STATE; STABILITY; EQUATION; MECHANICS; SYMMETRY; MOTION; KIND;
D O I
10.7498/aps.59.5223
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A coupled nonlinear relative-rotation system is studied, and the Hopf bifurcation is analyzed under the condition of primary resonance and 1:1 internal resonance. In order to control the Hopf bifurcation point, the stability and amplitude of limit cycle, a nonlinear feedback controller is proposed, and numerical calculation can confirm the validity of the method.
引用
收藏
页码:5223 / 5228
页数:6
相关论文
共 32 条
[11]   Nonlinear feedback control of Hopf bifurcation in a relative rotation dynamical system [J].
Liu Shuang ;
Liu Bin ;
Shi Pei-Ming .
ACTA PHYSICA SINICA, 2009, 58 (07) :4383-4389
[12]   A new type of non-Noether adiabatic invariants, i.e. adiabatic invariants of Lutzky type, for Lagrangian systems [J].
Luo Shao-Kai .
ACTA PHYSICA SINICA, 2007, 56 (10) :5580-5584
[13]  
Luo SK, 2005, CHINESE PHYS, V14, P656, DOI 10.1088/1009-1963/14/4/003
[14]   Form invariance and Hojman conserved quantity for nonholonomic mechanical systems [J].
Luo, SK ;
Guo, YX ;
Mei, FX .
ACTA PHYSICA SINICA, 2004, 53 (08) :2413-2418
[15]   Noether symmetry and Hojman conserved quantity for nonholonomic mechanical systems [J].
Luo, SK ;
Guo, YX ;
Mei, FX .
ACTA PHYSICA SINICA, 2004, 53 (05) :1271-1275
[16]   A set of Lie symmetrical non-Noether conserved quantity for the relativistic Hamiltonian systems [J].
Luo, SK ;
Jia, LQ ;
Cai, JL .
CHINESE PHYSICS, 2003, 12 (08) :841-845
[17]  
Luo SK, 2003, APPL MATH MECH-ENGL, V24, P468
[18]  
Luo SK, 1998, APPL MATH MECH-ENGL, V19, P45
[19]  
Luo SK, 2002, CHINESE PHYS LETT, V19, P449, DOI 10.1088/0256-307X/19/4/301
[20]   A unified theory of generalized classical mechanics and nonholonomic mechanics [J].
Luo, SK .
ACTA PHYSICA SINICA, 2002, 51 (07) :1416-1423