Microfluidic bioassay to characterize parasitic nematode phenotype and anthelmintic resistance

被引:17
作者
Chen, Baozhen [2 ]
Deutmeyer, Alex [2 ]
Carr, John [2 ]
Robertson, Alan P. [1 ]
Martin, Richard J. [1 ]
Pandey, Santosh [2 ]
机构
[1] Iowa State Univ, Dept Biomed Sci, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA
关键词
microfluidics; bioassay; Oesophagostomum dentatum; levamisole resistance; phenotype; POLY(DIMETHYLSILOXANE); DEVICES; SYSTEM; ASSAY;
D O I
10.1017/S0031182010001010
中图分类号
R38 [医学寄生虫学]; Q [生物科学];
学科分类号
07 ; 0710 ; 09 ; 100103 ;
摘要
With increasing resistance to anti-parasitic drugs, it has become more important to detect and recognize phenotypes of resistant isolates. Molecular methods of detecting resistant isolates are limited at present. Here, we introduce a microfluidic bioassay to measure phenotype using parameters of nematode locomotion. We illustrate the technique on larvae of an animal parasite Oesophagostomum dentatum. Parameters of sinusoidal motion such as propagation velocity, wavelength, wave amplitude, and oscillation frequency depended on the levamisole-sensitivity of the isolate of parasitic nematode. The levamisole-sensitive isolate (SENS) had a mean wave amplitude of 135 mu m, which was larger than 123 mu m of the levamisole-resistant isolate (LEVR). SENS had a mean wavelength of 373 mu m, which was less than 393 mu m of LEVR. The mean propagation velocity of SENS, 149 mu m s(-1), was similar to LEVR, 143 mu m s(-1). The propagation velocity of the isolates was inhibited by levamisole in a concentration-dependent manner above 0.5 mu M. The EC50 for SENS was 3 mu M and the EC50 for LEVR was 10 mu M. This microfluidic technology advances present-day nematode migration assays and provides a better quantification and increased drug sensitivity. It is anticipated that the bioassay will facilitate study of resistance to other anthelmintic drugs that affect locomotion.
引用
收藏
页码:80 / 88
页数:9
相关论文
共 33 条
[1]   Development of the egg hatch assay for detection of anthelminthic resistance in human hookworms [J].
Albonico, M ;
Wright, V ;
Ramsan, M ;
Haji, HJ ;
Taylor, M ;
Savioli, L ;
Bickle, Q .
INTERNATIONAL JOURNAL FOR PARASITOLOGY, 2005, 35 (07) :803-811
[2]  
Alexander Robert McNeill, 2002, P345
[3]   Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans [J].
Chronis, Nikos ;
Zimmer, Manuel ;
Bargmann, Cornelia I. .
NATURE METHODS, 2007, 4 (09) :727-731
[4]   An automated system for measuring parameters of nematode sinusoidal movement [J].
Cronin, CJ ;
Mendel, JE ;
Mukhtar, S ;
Kim, YM ;
Stirbl, RC ;
Bruck, J ;
Sternberg, PW .
BMC GENETICS, 2005, 6 (1)
[5]   Liquid chromatographic determination of levamisole in animal plasma: ultraviolet versus tandem mass spectrometric detection [J].
De Baere, S ;
Cherlet, M ;
Croubels, S ;
Baert, K ;
De Backer, P .
ANALYTICA CHIMICA ACTA, 2003, 483 (1-2) :215-224
[6]   Assays to Detect β-Tubulin Codon 200 Polymorphism in Trichuris trichiura and Ascaris lumbricoides [J].
Diawara, Aissatou ;
Drake, Lesley J. ;
Suswillo, Richard R. ;
Kihara, Jimmy ;
Bundy, Donald A. P. ;
Scott, Marilyn E. ;
Halpenny, Carli ;
Stothard, J. Russell ;
Prichard, Roger K. .
PLOS NEGLECTED TROPICAL DISEASES, 2009, 3 (03)
[7]   An imaging system for standardized quantitative analysis of C-elegans behavior -: art. no. 115 [J].
Feng, ZY ;
Cronin, CJ ;
Wittig, JH ;
Sternberg, PW ;
Schafer, WR .
BMC BIOINFORMATICS, 2004, 5 (1)
[8]  
GRAY J, 1953, Q J MICROSC SCI, V94, P551
[9]  
GRAY J, 1964, J EXP BIOL, V41, P135
[10]   A circuit for navigation in Caenorhabditis elegans [J].
Gray, JM ;
Hill, JJ ;
Bargmann, CI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (09) :3184-3191