A nonunique common fixed point theorem of Rhoades type in b-metric spaces with applications

被引:4
作者
Hamaizia, Taieb [1 ]
Aliouche, Abdelkrim [1 ]
机构
[1] OEB Univ, Dept Math & Informat, Syst Dynam & Control Lab, Oum El Bouaghi, Algeria
来源
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS | 2021年 / 12卷 / 02期
关键词
b-metric space; Common fixed point; Picard sequence; Nonlinear integral equations; Dynamic programming; CONTRACTIVE MAPPINGS; FUNCTIONAL-EQUATIONS; ORTHOGONAL SETS;
D O I
10.22075/ijnaa.2021.22279.2344
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to prove a nonunique common fixed point theorem of Rhoades type for two self-mappings in complete b-metric spaces. This theorem extends the results of [16] and [46]. Examples are furnished to illustrate the validity of our results. We apply our theorem to establish the existence of common solutions of a system of two nonlinear integral equations and a system of two functional equations arising in dynamic programming.
引用
收藏
页码:399 / 413
页数:15
相关论文
共 53 条
[1]  
Aleksic S., 2018, FASC MATH, V61, P5
[2]   Remarks on some fixed point results in b-metric spaces [J].
Aleksic, Suzana ;
Huang, Huaping ;
Mitrovic, Zoran D. ;
Radenovic, Stojan .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (04)
[3]  
Aliouche T, 2017, ASIAN J MATH COMPUTE, V15, P23
[4]  
[Anonymous], 2008, APPL MATH SCI
[5]  
[Anonymous], 2015, ABSTR APPL ANAL
[6]   A fixed point theorem for set-valued quasi-contractions in b-metric spaces [J].
Aydi, Hassen ;
Bota, Monica-Felicia ;
Karapinar, Erdal ;
Mitrovic, Slobodanka .
FIXED POINT THEORY AND APPLICATIONS, 2012,
[7]   FIXED POINTS OF ALMOST GENERALIZED (alpha, beta)-(psi, phi)-CONTRACTIVE MAPPINGS IN b-METRIC SPACES [J].
Babu, Gutti Venkata Ravindranadh ;
Dula, Tolera Mosissa .
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2018, 33 (02) :177-196
[8]   Orthogonal sets: The axiom of choice and proof of a fixed point theorem [J].
Baghani, Hamid ;
Gordji, Madjid Eshaghi ;
Ramezani, Maryam .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2016, 18 (03) :465-477
[9]  
Bakhtin I., 1989, FUNCT ANAL APPL+, V30, P26, DOI DOI 10.1039/AP9892600037
[10]  
Banach S., 1922, Fundamenta Mathematicae, V3, P133, DOI [10.4064/fm-3-1-133-181, DOI 10.4064/FM-3-1-133-181, https://doi.org/10.4064/fm-3-1-133-181]