Conservative unconditionally stable decoupled numerical schemes for the Cahn-Hilliard-Navier-Stokes-Darcy-Boussinesq system

被引:2
作者
Chen, Wenbin [1 ]
Han, Daozhi [2 ]
Wang, Xiaoming [3 ]
Zhang, Yichao [4 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai Key Lab Math Nonlinear Sci, Shanghai, Peoples R China
[2] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
[3] Southern Univ Sci & Technol, SUSTech Int Ctr Math, Natl Ctr Appl Math Shenzhen, Dept Math,Guangdong Prov Key Lab Computat Sci & M, Shenzhen, Peoples R China
[4] Fudan Univ, Sch Math Sci, Shanghai, Peoples R China
基金
国家重点研发计划;
关键词
convection; phase field model; two-phase flow; unconditional stability; SUPERPOSED FLUID; PENETRATIVE CONVECTION; ELEMENT-METHOD; 2ND-ORDER; FLOW; STABILITY; MODEL; TIME; EFFICIENT; LAYER;
D O I
10.1002/num.22841
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose two mass and heat energy conservative, unconditionally stable, decoupled numerical algorithms for solving the Cahn-Hilliard-Navier-Stokes-Darcy-Boussinesq system that models thermal convection of two-phase flows in superposed free flow and porous media. The schemes totally decouple the computation of the Cahn-Hilliard equation, the Darcy equations, the heat equation, the Navier-Stokes equations at each time step, and thus significantly reducing the computational cost. We rigorously show that the schemes are conservative and energy-law preserving. Numerical results are presented to demonstrate the accuracy and stability of the algorithms.
引用
收藏
页码:1823 / 1842
页数:20
相关论文
共 62 条
[41]   Coupling fluid flow with porous media flow [J].
Layton, WJ ;
Schieweck, F ;
Yotov, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 40 (06) :2195-2218
[42]   Electromagnetic simulation of a 16-channel head transceiver at 7 T using circuit-spatial optimization [J].
Li, Xin ;
Pan, Jullie W. ;
Avdievich, Nikolai, I ;
Hetherington, Hoby P. ;
Rispoli, Joseph, V .
MAGNETIC RESONANCE IN MEDICINE, 2021, 85 (06) :3463-3478
[43]   Error analysis of a mixed finite element method for a Cahn-Hilliard-Hele-Shaw system [J].
Liu, Yuan ;
Chen, Wenbin ;
Wang, Cheng ;
Wise, Steven M. .
NUMERISCHE MATHEMATIK, 2017, 135 (03) :679-709
[44]   The Onset of Double-Diffusive Convection in a Superposed Fluid and Porous Layer Under High-Frequency and Small-Amplitude Vibrations [J].
Lyubimova, T. P. ;
Kolchanova, E. A. .
TRANSPORT IN POROUS MEDIA, 2018, 122 (01) :97-124
[45]   CONVECTION IN A COUPLED FREE FLOW-POROUS MEDIA SYSTEM [J].
Mccurdy, Matthew ;
Moore, Nicholas ;
Wang, Xiaoming .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2019, 79 (06) :2313-2339
[46]   An unconditionally stable uncoupled scheme for a triphasic Cahn-Hilliard/Navier-Stokes model [J].
Minjeaud, Sebastian .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (02) :584-618
[47]   On a new pseudocompressibility method for the incompressible Navier-Stokes equation [J].
Shen, J .
APPLIED NUMERICAL MATHEMATICS, 1996, 21 (01) :71-90
[48]   A New Class of Efficient and Robust Energy Stable Schemes for Gradient Flows [J].
不详 .
SIAM REVIEW, 2019, 61 (03) :507-507
[49]   The scalar auxiliary variable (SAV) approach for gradient flows [J].
Shen, Jie ;
Xu, Jie ;
Yang, Jiang .
JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 353 :407-416
[50]   DECOUPLED, ENERGY STABLE SCHEMES FOR PHASE-FIELD MODELS OF TWO-PHASE INCOMPRESSIBLE FLOWS [J].
Shen, Jie ;
Yang, Xiaofeng .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) :279-296