On action-angle variables for the second Poisson bracket of KdV

被引:4
作者
Kappeler, T [1 ]
Makarov, M [1 ]
机构
[1] Univ Zurich, Math Inst, CH-8057 Zurich, Switzerland
关键词
D O I
10.1007/s002200000282
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that on the Sobolev spaces H-N(S-1) (N greater than or equal to 0), each leaf of the Foliation, induced by the second Poisson bracket of KdV, admits global action-angle variables. The actions with respect to the first bracket raise to the actions with respect to the second bracket, The angles: for the fil st bracket are, at the same time, angles for the second bracket.
引用
收藏
页码:651 / 677
页数:27
相关论文
共 19 条
[1]  
Battig D, 1997, PAC J MATH, V181, P1
[2]   ON THE SYMPLECTIC STRUCTURE OF THE PHASE-SPACE FOR PERIODIC KDV, TODA, AND DEFOCUSING NLS [J].
BATTIG, D ;
BLOCH, AM ;
GUILLOT, JC ;
KAPPELER, T .
DUKE MATHEMATICAL JOURNAL, 1995, 79 (03) :549-604
[3]   On the Korteweg-de Vries equation: Convergent Birkhoff normal form [J].
Battig, D ;
Kappeler, T ;
Mityagin, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 140 (02) :335-358
[4]   ON GLOBAL ACTION-ANGLE COORDINATES [J].
DUISTERMAAT, JJ .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (06) :687-706
[5]   CANONICALLY CONJUGATE VARIABLES FOR KORTEWEG-DEVRIES EQUATION AND TODA LATTICE WITH PERIODIC BOUNDARY-CONDITIONS [J].
FLASCHKA, H ;
MCLAUGHLIN, DW .
PROGRESS OF THEORETICAL PHYSICS, 1976, 55 (02) :438-456
[6]   GAPS AND BANDS OF ONE DIMENSIONAL PERIODIC SCHRODINGER-OPERATORS [J].
GARNETT, J ;
TRUBOWITZ, E .
COMMENTARII MATHEMATICI HELVETICI, 1984, 59 (02) :258-312
[7]  
GELFAND IM, 1989, FUNCT ANAL APPL, V23, P1
[8]   FIBRATION OF THE PHASE-SPACE FOR THE KORTEWEG-DEVRIES EQUATION [J].
KAPPELER, T .
ANNALES DE L INSTITUT FOURIER, 1991, 41 (03) :539-575
[9]  
KAPPELER T, BIRKHOFF COORDINATES
[10]  
KAPPELER T, 1998, FISICA MATEMATICA, V54, P132