D-branes, RR-fields and duality on noncommutative manifolds

被引:35
作者
Brodzki, Jacek [1 ]
Mathai, Varghese [2 ]
Rosenberg, Jonathan [3 ]
Szabo, Richard J. [4 ,5 ]
机构
[1] Univ Southampton, Sch Math, Southampton SO17 1BJ, Hants, England
[2] Univ Adelaide, Dept Pure Math, Adelaide, SA 5005, Australia
[3] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[4] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[5] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00220-007-0396-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop some of the ingredients needed for string theory on noncommutative spacetimes, proposing an axiomatic formulation of T-duality as well as establishing a very general formula for D-brane charges. This formula is closely related to a noncommutative Grothendieck-Riemann-Roch theorem that is proved here. Our approach relies on a very general form of Poincare duality, which is studied here in detail. Among the technical tools employed are calculations with iterated products in bivariant K-theory and cyclic theory, which are simplified using a novel diagram calculus reminiscent of Feynman diagrams.
引用
收藏
页码:643 / 706
页数:64
相关论文
共 87 条
[1]  
Asakawa T, 2002, J HIGH ENERGY PHYS
[2]  
Atiyah M., 1969, P INT S FUNCT AN TOK, P21
[3]  
Atiyah M., 2004, UKR MATH B, V1, P291
[4]  
BAAJ S, 1983, CR ACAD SCI I-MATH, V296, P875
[5]  
BAUM P, 1982, P SYMP PURE MATH, V38, P117
[6]  
Blackadar B., 1998, MATH SCI RES I PUBLI, V5
[7]  
Bott R., 1982, DIFFERENTIAL FORMS A, V82
[8]   Nonassociative tori and applications to T-duality [J].
Bouwknegt, P ;
Hannabuss, K ;
Mathai, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 264 (01) :41-69
[9]   Topology and H-flux of T-dual manifolds -: art. no. 181601 [J].
Bouwknegt, P ;
Evslin, J ;
Mathai, V .
PHYSICAL REVIEW LETTERS, 2004, 92 (18) :181601-1
[10]   T-duality:: Topology change from H-flux [J].
Bouwknegt, P ;
Evslin, J ;
Mathai, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 249 (02) :383-415