Ionic Crosslinking-Induced Nanochannels: Nanophase Separation for Ion Transport Promotion

被引:62
作者
Chen, Weipeng [1 ,2 ]
Dong, Tiandu [1 ]
Xiang, Yun [1 ]
Qian, Yongchao [1 ,3 ]
Zhao, Xiaolu [1 ,2 ]
Xin, Weiwen [1 ,2 ]
Kong, Xiang-Yu [1 ]
Jiang, Lei [1 ,2 ]
Wen, Liping [1 ,2 ]
机构
[1] Chinese Acad Sci, Tech Inst Phys & Chem, CAS Key Lab Bioinspired Mat & Interfacial Sci, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Future Technol, Beijing 100049, Peoples R China
[3] Northwestern Polytech Univ, Sch Chem & Chem Engn, Shanxi Key Lab Macromol Sci & Technol, Xian 710072, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
ionic crosslinking membranes; ion transport; nanophase separation; salinity gradient energy conversion; POLY(ARYLENE ETHER KETONE)S; OSMOTIC ENERGY-CONVERSION; EXCHANGE MEMBRANES; SIDE-CHAIN; PERFORMANCE; COPOLYMERS;
D O I
10.1002/adma.202108410
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Charge-governed ion transport is crucial to numerous industries, and the advanced membrane is the essential component. In nature, the efficient and selective ion transport is mainly governed by the charged ion channels located in cell membrane, indicating the architecture with functional differentiation. Inspired by this architecture, a membrane by ionic crosslinking sulfonated poly(arylene ether ketone) and imidazolium-functionalized poly(arylene ether sulfone) is designed and fabricated to make full use of the charges. This ionic crosslinking is designed to realize nanophase separation to aggregate the ion pathways in the membrane, which results in excellent ion selectivity and high ion conductivity. With the excellent ion transport behavior, ionic crosslinking membrane shows great potential in osmotic energy conversion, which maximum power density can be up to 16.72 W m(-2). This design of ionic crosslinking-induced nanophase separation offers a roadmap for ion transport promotion.
引用
收藏
页数:10
相关论文
共 65 条
[21]  
Jain T, 2015, NAT NANOTECHNOL, V10, P1053, DOI [10.1038/nnano.2015.222, 10.1038/NNANO.2015.222]
[22]   Selective and quantitative sulfonation of poly(arylene ether ketone)s containing pendant phenyl rings by chlorosulfonic acid [J].
Jeong, Myung-Hwan ;
Lee, Kwan-Soo ;
Hong, Young-Taik ;
Lee, Jae-Suk .
JOURNAL OF MEMBRANE SCIENCE, 2008, 314 (1-2) :212-220
[23]   Pendant-sulfonated poly(arylene ether ketone) (PAEK) membranes cross-linked with a proton conducting reagent for fuel cells [J].
Kim, Ji-eun ;
Kim, Dukjoon .
JOURNAL OF MEMBRANE SCIENCE, 2012, 405 :176-184
[24]   Strong, Water-Stable Ionic Cable from Bio-Hydrogel [J].
Kong, Weiqing ;
Li, Tian ;
Chen, Chaoji ;
Chen, Gegu ;
Brozena, Alexandra H. ;
Liu, Dapeng ;
Liu, Yang ;
Wang, Chengwei ;
Gan, Wentao ;
Wang, Sha ;
He, Shuaiming ;
Hu, Liangbing .
CHEMISTRY OF MATERIALS, 2019, 31 (22) :9288-9294
[25]   Optimizing end-group cross-linkable polymer electrolytes for fuel cell applications [J].
Lee, Kwan-Soo ;
Jeong, Myung-Hwan ;
Lee, Jae-Suk ;
Pivovar, Bryan S. ;
Kim, Yu Seung .
JOURNAL OF MEMBRANE SCIENCE, 2010, 352 (1-2) :180-188
[26]   Dually cross-linked polymer electrolyte membranes for direct methanol fuel cells [J].
Lee, Won Hyo ;
Lee, Kang Hyuck ;
Shin, Dong Won ;
Hwang, Doo Sung ;
Kang, Na Rae ;
Cho, Doo Hee ;
Kim, Ji Hoon ;
Lee, Young Moo .
JOURNAL OF POWER SOURCES, 2015, 282 :211-222
[27]   A nanofluidic ion regulation membrane with aligned cellulose nanofibers [J].
Li, Tian ;
Li, Sylvia Xin ;
Kong, Weiqing ;
Chen, Chaoji ;
Hitz, Emily ;
Jia, Chao ;
Dai, Jiaqi ;
Zhang, Xin ;
Briber, Robert ;
Siwy, Zuzanna ;
Reed, Mark ;
Hu, Liangbing .
SCIENCE ADVANCES, 2019, 5 (02)
[28]   Amphoteric ion-exchange membranes with superior mono-/bi-valent anion separation performance for electrodialysis applications [J].
Liao, Junbin ;
Yu, Xinyan ;
Pan, Nengxiu ;
Li, Jun ;
Shen, Jiangnan ;
Gao, Congjie .
JOURNAL OF MEMBRANE SCIENCE, 2019, 577 :153-164
[29]   A Soluble and Conductive Polyfluorene Ionomer with Pendant Imidazolium Groups for Alkaline Fuel Cell Applications [J].
Lin, Bencai ;
Qiu, Lihua ;
Qiu, Bo ;
Peng, Yu ;
Yan, Feng .
MACROMOLECULES, 2011, 44 (24) :9642-9649
[30]   Power generation by reverse electrodialysis in a single-layer nanoporous membrane made from core-rim polycyclic aromatic hydrocarbons [J].
Liu, Xue ;
He, Meng ;
Calvani, Dario ;
Qi, Haoyuan ;
Gupta, Karthick B. Sai Sankar ;
de Groot, Huub J. M. ;
Sevink, G. J. Agur ;
Buda, Francesco ;
Kaiser, Ute ;
Schneider, Gregory F. .
NATURE NANOTECHNOLOGY, 2020, 15 (04) :307-+