Improved Reflectivity and Velocity Model for Aluminum Gratings on YZ LiNbO3

被引:2
作者
Saldanha, Nancy [1 ]
Malocha, Donald C. [1 ]
机构
[1] Univ Cent Florida, Sch Elect Engn & Comp Sci, Orlando, FL 32816 USA
关键词
SURFACE ACOUSTIC-WAVES; SAW; ARRAYS; ENERGY;
D O I
10.1109/TUFFC.2011.1872
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Lithium niobate has recently been used for SAW tags and temperature sensors because of its high coupling coefficient and high reflectivity. To increase the device operating frequency for a given electrode line resolution, harmonic operation of the reflector is a very attractive option. When used in conjunction with harmonically operated transducers, the device operating frequency can be increased for a given photolithographic line width resolution. To design and accurately predict the behavior of these devices, it is necessary to model the electrode reflectivity and velocity for both fundamental and second-harmonic operation. The coupling of modes (COM) model has been used to model these devices, however the COM model uses empirically determined coefficients to model reflectivity. In this paper, the reflectivity and velocity of aluminum electrodes is extracted experimentally for fundamental and second-harmonic operation versus metalization ratios ranging from 0.2 to 0.9 and versus normalized metal thickness ranging from 0.4% to 4%. A least-squares fit is then performed on the data using physical terms in the transmission line model to yield equations that can be used in the COM model to predict device behavior over varying metallization ratios and normalized metal thicknesses. Orthogonal frequency-coded (OFC) SAW tags were designed and fabricated and experimentally obtained data are compared with the COM modeled responses for the tags at fundamental and second-harmonic operation to verify the predictions.
引用
收藏
页码:798 / 807
页数:10
相关论文
共 18 条
[1]  
CHEN DP, 1985, IEEE T SON ULTRASON, V32, P395, DOI 10.1109/T-SU.1985.31609
[2]   PROPERTIES OF REFLECTIVE ARRAYS FOR SURFACE ACOUSTIC RESONATORS [J].
CROSS, PS .
IEEE TRANSACTIONS ON SONICS AND ULTRASONICS, 1976, 23 (04) :255-262
[3]   AN ANALYSIS OF ENERGY-STORAGE EFFECTS ON SAW PROPAGATION IN PERIODIC ARRAYS [J].
DATTA, S ;
HUNSINGER, BJ .
IEEE TRANSACTIONS ON SONICS AND ULTRASONICS, 1980, 27 (06) :333-341
[4]   1ST-ORDER REFLECTION COEFFICIENT OF SURFACE ACOUSTIC-WAVES FROM THIN-STRIP OVERLAYS [J].
DATTA, S ;
HUNSINGER, BJ .
JOURNAL OF APPLIED PHYSICS, 1979, 50 (09) :5661-5665
[5]  
DATTA S, 1979, IEEE ULTR S, P673
[6]  
DUNNROWICZ C, 1976, ULTRASONICS S P, P386
[7]   Spread Spectrum Orthogonal Frequency Coded SAW Tags and Sensors Using Harmonic Operation [J].
Gallagher, Daniel R. ;
Gallagher, Mark W. ;
Saldanha, Nancy ;
Pavlina, John M. ;
Malocha, Donald C. .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2010, 58 (03) :674-679
[8]   Narrow electrodes on YZ-LiNbO3 as an alternative to etched grooves for dispersive delay lines [J].
Harma, Sauna ;
Kim, Che-Uk ;
Balashov, Sergei M. ;
Plessky, Victor P. .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2008, 55 (02) :494-498
[9]   Extraction of the SAW attenuation parameter in periodic reflecting gratings [J].
Lehtonen, S ;
Plessky, VP ;
Hartmann, CS ;
Salomaa, AM .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2005, 52 (01) :111-119
[10]   INFLUENCE OF STORED ENERGY AT STEP DISCONTINUITIES ON BEHAVIOR OF SURFACE-WAVE GRATINGS [J].
LI, RCM ;
MELNGAILIS, J .
IEEE TRANSACTIONS ON SONICS AND ULTRASONICS, 1975, SU22 (03) :189-198