Some conjectures on generalized cluster algebras via the cluster formula and D-matrix pattern

被引:14
作者
Cao, Peigen [1 ]
Li, Fang [1 ]
机构
[1] Zhejiang Univ, Dept Math, Yuquan Campus, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Cluster algebra; Generalized cluster algebra; Exchange graph; Cluster pattern; Cluster formula; CATEGORIES;
D O I
10.1016/j.jalgebra.2017.08.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the theory of generalized cluster algebras, we build the so-called cluster formula and D-matrix pattern. Then as applications, some fundamental conjectures of generalized cluster algebras are solved affirmatively. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:57 / 78
页数:22
相关论文
共 18 条
[1]   CLUSTER CATEGORIES FOR ALGEBRAS OF GLOBAL DIMENSION 2 AND QUIVERS WITH POTENTIAL [J].
Amiot, Claire .
ANNALES DE L INSTITUT FOURIER, 2009, 59 (06) :2525-2590
[2]   Quantum cluster algebras [J].
Berenstein, A ;
Zelevinsky, A .
ADVANCES IN MATHEMATICS, 2005, 195 (02) :405-455
[3]   Tilting theory and cluster combinatorics [J].
Buan, Aslak Bakke ;
Marsh, Bethany Rose ;
Reineke, Markus ;
Reiten, Idun ;
Todorov, Gordana .
ADVANCES IN MATHEMATICS, 2006, 204 (02) :572-618
[4]   From triangulated categories to cluster algebras II [J].
Caldero, Philippe ;
Keller, Bernhard .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2006, 39 (06) :983-1009
[5]   Teichmuller Spaces of Riemann Surfaces with Orbifold Points of Arbitrary Order and Cluster Variables [J].
Chekhov, Leonid ;
Shapiro, Michael .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (10) :2746-2772
[6]   Categorification of Skew-symmetrizable Cluster Algebras [J].
Demonet, Laurent .
ALGEBRAS AND REPRESENTATION THEORY, 2011, 14 (06) :1087-1162
[7]   Cluster algebras II: Finite type classification [J].
Fomin, S ;
Zelevinsky, A .
INVENTIONES MATHEMATICAE, 2003, 154 (01) :63-121
[8]   Cluster algebras I: Foundations [J].
Fomin, S ;
Zelevinsky, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (02) :497-529
[9]  
Fomin S., 2003, Current developments in mathematics, P1
[10]   Cluster algebras and triangulated surfaces. Part I: Cluster complexes [J].
Fomin, Sergey ;
Shapiro, Michael ;
Thurston, Dylan .
ACTA MATHEMATICA, 2008, 201 (01) :83-146