Defect Engineering in Atomic-Layered Graphitic Carbon Nitride for Greatly Extended Visible-Light Photocatalytic Hydrogen Evolution

被引:136
作者
Zhang, Jin [1 ]
Chen, Jinwei [1 ]
Wan, Yingfei [1 ]
Liu, Hongwei [1 ]
Chen, Wang [1 ]
Wang, Gang [1 ]
Wang, Ruilin [1 ]
机构
[1] Sichuan Univ, Coll Mat Sci & Engn, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
g-C3N4; defects engineering; atomic layered g-C3N4; quantum size effect; H-2; evolution; DEFICIENT G-C3N4; POROUS G-C3N4; EXFOLIATION; NANOSHEETS; SHEETS; WATER; PERFORMANCE; OXIDATION;
D O I
10.1021/acsami.9b21115
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Defect modulation usually has a great influence on the electronic structures and activities of photocatalysts. Here, atomically layered g-C3N4 modified via defect engineering with nitrogen vacancy and cyanogen groups is obtained through two facile steps of thermal treatment (denoted as A-V-g-C3N4). Detailed analysis reveals that the atomic-layered graphitic carbon nitride (2.3 nm) with defect engineering modifying provides more active sites and decreases the electron/hole transferring distances. More importantly, the defects that contain nitrogen vacancies and cyanogen groups extend the responsive wavelength to 650 nm, which effectively suppresses the quantum size effect of atomic-layered g-C3N4. Therefore, the as-obtained A-V-g-C3N4 exhibited a photocatalytic H-2 evolution rate and apparent quantum yield of 3.7 mmol.g(-1).h(-1) and 14.98% (lambda > 420 nm), respectively. This work is expected to provide guidance for the rational design of atomic-layered g-C3N4.
引用
收藏
页码:13805 / 13812
页数:8
相关论文
共 51 条
[1]   Exfoliation of Crystalline 2D Carbon Nitride: Thin Sheets, Scrolls and Bundles via Mechanical and Chemical Routes [J].
Bojdys, Michael J. ;
Severin, Nikolai ;
Rabe, Juergen P. ;
Cooper, Andrew I. ;
Thomas, Arne ;
Antonietti, Markus .
MACROMOLECULAR RAPID COMMUNICATIONS, 2013, 34 (10) :850-854
[2]   Photocatalytic activation of sulfite by nitrogen vacancy modified graphitic carbon nitride for efficient degradation of carbamazepine [J].
Cao, Jin ;
Nie, Wenshan ;
Huang, Long ;
Ding, Yaobin ;
Lv, Kangle ;
Tang, Heqing .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 241 :18-27
[3]   Polymeric Photocatalysts Based on Graphitic Carbon Nitride [J].
Cao, Shaowen ;
Low, Jingxiang ;
Yu, Jiaguo ;
Jaroniec, Mietek .
ADVANCED MATERIALS, 2015, 27 (13) :2150-2176
[4]   Nitrogen-Deficient Graphitic Carbon Nitride with Enhanced Performance for Lithium Ion Battery Anodes [J].
Chen, Jingjing ;
Mao, Zhiyong ;
Zhang, Lexi ;
Wang, Dajian ;
Xu, Ran ;
Bie, Lijian ;
Fahlman, Bradley D. .
ACS NANO, 2017, 11 (12) :12650-12657
[5]   Gradual carbon doping of graphitic carbon nitride towards metal-free visible light photocatalytic hydrogen evolution [J].
Chen, Zhou ;
Fan, Ting-Ting ;
Yu, Xiang ;
Wu, Qiu-Ling ;
Zhu, Qiu-Hui ;
Zhang, Li-Zhong ;
Li, Jian-Hui ;
Fang, Wei-Ping ;
Yi, Xiao-Dong .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (31) :15310-15319
[6]   Constructing Highly Uniform Onion-Ring-like Graphitic Carbon Nitride for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution [J].
Cui, Lifeng ;
Song, Jialing ;
McGuire, Allister F. ;
Kang, Shifei ;
Fang, Xueyou ;
Wang, Junjie ;
Yin, Chaochuang ;
Li, Xi ;
Wang, Yangang ;
Cui, Bianxiao .
ACS NANO, 2018, 12 (06) :5551-5558
[7]   Condensed and low-defected graphitic carbon nitride with enhanced photocatalytic hydrogen evolution under visible light irradiation [J].
Cui, Yanjuan ;
Zhang, Guigang ;
Lin, Zhenzhen ;
Wang, Xinchen .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 181 :413-419
[8]   Nitrogen vacancy engineered graphitic C3N4-based polymers for photocatalytic oxidation of aromatic alcohols to aldehydes [J].
Ding, Jing ;
Xu, Wei ;
Wan, Hui ;
Yuan, Dashui ;
Chen, Chong ;
Wang, Lei ;
Guan, Guofeng ;
Dai, Wei-Lin .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 221 :626-634
[9]   Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst [J].
Fu, Junwei ;
Xu, Quanlong ;
Low, Jingxiang ;
Jiang, Chuanjia ;
Yu, Jiaguo .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 243 :556-565
[10]   A dual-metal-organic-framework derived electrocatalyst for oxygen reduction [J].
Guan, Bu Yuan ;
Yu, Le ;
Lou, Xiong Wen .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3092-3096