Congruences modulo powers of 3 for 3-and 9-colored generalized Frobenius partitions

被引:5
|
作者
Wang, Liuquan [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Congruences; Generalized Frobenius partitions; Modulo powers of 3; 6; COLORS; RAMANUJAN; ANDREWS;
D O I
10.1016/j.disc.2018.08.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let c phi(k)(n) be the number of k-colored generalized Frobenius partitions of n. We establish some infinite families of congruences for c phi(3)(n) and c phi(9) (n) modulo arbitrary powers of 3, which refine the results of Kolitsch. For example, for k >= 3 and n >= 0, we prove that c phi(3)(3(2k)n + 7 . 3(2k) + 1/8) 0 (mod 3(4k+5)). We give two different proofs to the congruences satisfied by c phi(9)(n). One of the proofs uses a relation between c phi(9)(n) and c phi(3)(n) due to Kolitsch, for which we provide a new proof in this paper. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:3370 / 3384
页数:15
相关论文
共 50 条
  • [31] Congruences for cubic partition pairs modulo powers of 3
    Bernard L. S. Lin
    Liuquan Wang
    Ernest X. W. Xia
    The Ramanujan Journal, 2018, 46 : 563 - 578
  • [32] Congruences modulo powers of 2 for t-colored overpartitions
    Nayaka, S. Shivaprasada
    Naika, M. S. Mahadeva
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (03):
  • [33] Congruences modulo powers of 2 for t-colored overpartitions
    S. Shivaprasada Nayaka
    M. S. Mahadeva Naika
    Boletín de la Sociedad Matemática Mexicana, 2022, 28
  • [34] Congruences modulo 4 for the number of 3-regular partitions
    Ballantine, Cristina
    Merca, Mircea
    COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) : 1577 - 1583
  • [35] An unexpected Ramanujan-type congruence modulo 7 for 4-colored generalized Frobenius partitions
    Wenlong Zhang
    Chun Wang
    The Ramanujan Journal, 2017, 44 : 125 - 131
  • [36] A CONJECTURE OF MERCA ON CONGRUENCES MODULO POWERS OF 2 FOR PARTITIONS INTO DISTINCT PARTS
    Du, Julia Q. D.
    Tang, Dazhao
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (01) : 26 - 36
  • [37] Congruences for 7 and 49-regular partitions modulo powers of 7
    Chandrashekar Adiga
    Ranganatha Dasappa
    The Ramanujan Journal, 2018, 46 : 821 - 833
  • [38] N-colored generalized Frobenius partitions: generalized Kolitsch identities
    Aygin, Zafer Selcuk
    Nguyen, Khoa D.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2022, : 447 - 469
  • [39] CONGRUENCES MODULO POWERS OF 2 FOR FU'S 5 DOTS BRACELET PARTITIONS
    Xia, Ernest X. W.
    Yao, Olivia X. M.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (03) : 360 - 372
  • [40] Congruences modulo powers of 3 for 2-color partition triples
    Tang, Dazhao
    PERIODICA MATHEMATICA HUNGARICA, 2019, 78 (02) : 254 - 266