Let c phi(k)(n) be the number of k-colored generalized Frobenius partitions of n. We establish some infinite families of congruences for c phi(3)(n) and c phi(9) (n) modulo arbitrary powers of 3, which refine the results of Kolitsch. For example, for k >= 3 and n >= 0, we prove that c phi(3)(3(2k)n + 7 . 3(2k) + 1/8) 0 (mod 3(4k+5)). We give two different proofs to the congruences satisfied by c phi(9)(n). One of the proofs uses a relation between c phi(9)(n) and c phi(3)(n) due to Kolitsch, for which we provide a new proof in this paper. (C) 2018 Elsevier B.V. All rights reserved.
机构:
Qinghai Normal Univ, Sch Math & Stat, Xining, Qinghai, Peoples R China
Acad Plateau Sci & Sustainabil, Xining, Qinghai, Peoples R ChinaQinghai Normal Univ, Sch Math & Stat, Xining, Qinghai, Peoples R China
Cui, Su-Ping
Gu, Nancy S. S.
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Ctr Combinator, Tianjin, Peoples R ChinaQinghai Normal Univ, Sch Math & Stat, Xining, Qinghai, Peoples R China
机构:
Qinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
Acad Plateau Sci & Sustainabil, Xining 810008, Qinghai, Peoples R ChinaQinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
Cui, Su-Ping
Gu, Nancy S. S.
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Ctr Combinator, LPMC, Tianjin 300071, Peoples R ChinaQinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
Gu, Nancy S. S.
Tang, Dazhao
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R ChinaQinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China