Congruences modulo powers of 3 for 3-and 9-colored generalized Frobenius partitions

被引:5
|
作者
Wang, Liuquan [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Congruences; Generalized Frobenius partitions; Modulo powers of 3; 6; COLORS; RAMANUJAN; ANDREWS;
D O I
10.1016/j.disc.2018.08.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let c phi(k)(n) be the number of k-colored generalized Frobenius partitions of n. We establish some infinite families of congruences for c phi(3)(n) and c phi(9) (n) modulo arbitrary powers of 3, which refine the results of Kolitsch. For example, for k >= 3 and n >= 0, we prove that c phi(3)(3(2k)n + 7 . 3(2k) + 1/8) 0 (mod 3(4k+5)). We give two different proofs to the congruences satisfied by c phi(9)(n). One of the proofs uses a relation between c phi(9)(n) and c phi(3)(n) due to Kolitsch, for which we provide a new proof in this paper. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:3370 / 3384
页数:15
相关论文
共 50 条