Deep reconstruction of highly disordered iron/nickel nitrate hydroxide nanoplates for high-performance oxygen evolution reaction in alkaline media

被引:11
作者
Liu, Jinghua [1 ]
He, Xiong [1 ]
Wang, Yaoyao [1 ]
Sun, Zijun [1 ]
Liu, Yansheng [1 ]
Liu, Baosheng [1 ]
Li, Hongda [1 ]
Guo, Fei [1 ]
Li, Xin [2 ]
机构
[1] Guangxi Univ Sci & Technol, Guangxi Engn Res Ctr Characterist Met Powder Mat, Sch Microelect & Mat Engn, Liuzhou Key Lab New Energy Vehicle Power Lithium B, Liuzhou 545000, Peoples R China
[2] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers &, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China
关键词
Disorder; FeNi based electrocatalysts; Reconstruction; Nitrate hydroxide; OER; LAYERED DOUBLE HYDROXIDE; WATER OXIDATION; ELECTROCATALYSTS; CATALYST; FILMS; RAMAN; FOAM; NANOCRYSTALS; ARRAYS;
D O I
10.1016/j.jallcom.2022.167060
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rational design of FeNi based electrocatalysts with robust OER activity and stability is of great significance for promising water electrolysis. In this work, in-situ growth of highly disordered iron-nickel nitrate hy-droxide (FeNiNH) nanoplates on nickel foam via a simple one-pot solvothermal method is demonstrated. The highly disordered FeNiNH exhibits coexistence of amorphous and crystal microstructure, providing more active sites from boundaries, while Fe incorporation improves the electronic structure, indeed ac-celerating intrinsic activity. The optimized Fe1Ni9NH shows high electrocatalytic activity with a low over -potential of 209 mV at 50 mA/cm2, a Tafel slope of 73 mV/dec and good long-term stability. Deep phase transformation from FeNi nitrate hydroxide to FeNi oxyhydroxide can be discovered with nitrate leaching during OER process. Our work provides a novel strategy for the design of efficient OER electrocatalyst and a new sight in the reconstruction process for FeNi based electrocatalysts.(c) 2022 Published by Elsevier B.V.
引用
收藏
页数:10
相关论文
共 62 条
[1]   Host, Suppressor, and Promoter-The Roles of Ni and Fe on Oxygen Evolution Reaction Activity and Stability of NiFe Alloy Thin Films in Alkaline Media [J].
Bao, Fuxi ;
Kemppainen, Erno ;
Dorbandt, Iris ;
Xi, Fanxing ;
Bors, Radu ;
Maticiuc, Natalia ;
Wenisch, Robert ;
Bagacki, Rory ;
Schary, Christian ;
Michalczik, Ursula ;
Bogdanoff, Peter ;
Lauermann, Iver ;
van de Krol, Roel ;
Schlatmann, Rutger ;
Calnan, Sonya .
ACS CATALYSIS, 2021, 11 (16) :10537-10552
[2]   An Amorphous Nickel-Iron-Based Electrocatalyst with Unusual Local Structures for Ultrafast Oxygen Evolution Reaction [J].
Chen, Gao ;
Zhu, Yapping ;
Chen, Hao Ming ;
Hu, Zhiwei ;
Hung, Sung-Fu ;
Ma, Nana ;
Dai, Jie ;
Lin, Hong-Ji ;
Chen, Chien-Te ;
Zhou, Wei ;
Shao, Zongping .
ADVANCED MATERIALS, 2019, 31 (28)
[3]   Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis [J].
Cheng, Weiren ;
Zhao, Xu ;
Su, Hui ;
Tang, Fumin ;
Che, Wei ;
Zhang, Hui ;
Liu, Qinghua .
NATURE ENERGY, 2019, 4 (02) :115-122
[4]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[5]   Eutectic-Derived Mesoporous Ni-Fe-O Nanowire Network Catalyzing Oxygen Evolution and Overall Water Splitting [J].
Dong, Chaoqun ;
Kou, Tianyi ;
Gao, Hui ;
Peng, Zhangquan ;
Zhang, Zhonghua .
ADVANCED ENERGY MATERIALS, 2018, 8 (05)
[6]   How Cobalt and Iron Doping Determine the Oxygen Evolution Electrocatalytic Activity of NiOOH [J].
Dou, Yuhai ;
He, Chun-Ting ;
Zhang, Lei ;
Al-Mamun, Mohammad ;
Guo, Haipeng ;
Zhang, Wenchao ;
Xia, Qingbing ;
Xu, Jiantie ;
Jiang, Lixue ;
Wang, Yun ;
Liu, Porun ;
Chen, Xiao-Ming ;
Yin, Huajie ;
Zhao, Huijun .
CELL REPORTS PHYSICAL SCIENCE, 2020, 1 (06)
[7]   Phase- and Surface Composition-Dependent Electrochemical Stability of Ir-Ru Nanoparticles during Oxygen Evolution Reaction [J].
Escalera-Lopez, Daniel ;
Czioska, Steffen ;
Geppert, Janis ;
Boubnov, Alexey ;
Roese, Philipp ;
Saraci, Erisa ;
Krewer, Ulrike ;
Grunwaldt, Jan-Dierk ;
Cherevko, Serhiy .
ACS CATALYSIS, 2021, 11 (15) :9300-9316
[8]   Direct Observation of Structural Evolution of Metal Chalcogenide in Electrocatalytic Water Oxidation [J].
Fan, Ke ;
Zou, Haiyuan ;
Lu, Yue ;
Chen, Hong ;
Li, Fusheng ;
Liu, Jinxuan ;
Sun, Licheng ;
Tong, Lianpeng ;
Toney, Michael F. ;
Sui, Manling ;
Yu, Jiaguo .
ACS NANO, 2018, 12 (12) :12369-12379
[9]   Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting [J].
Friebel, Daniel ;
Louie, Mary W. ;
Bajdich, Michal ;
Sanwald, Kai E. ;
Cai, Yun ;
Wise, Anna M. ;
Cheng, Mu-Jeng ;
Sokaras, Dimosthenis ;
Weng, Tsu-Chien ;
Alonso-Mori, Roberto ;
Davis, Ryan C. ;
Bargar, John R. ;
Norskov, Jens K. ;
Nilsson, Anders ;
Bell, Alexis T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (03) :1305-1313
[10]   Interface engineering of metallic nickel nanoparticles/semiconductive nickel molybdate nanowires for efficiently electrocatalytic water splitting [J].
Geng, B. ;
He, Y. ;
Yan, F. ;
Zhu, C. ;
Zhang, X. ;
Chen, Y. .
MATERIALS TODAY NANO, 2022, 18