Influence of Zeeman splitting and thermally excited polaron states on magnetoelectrical and magnetothermal properties of magnetoresistive polycrystalline manganite La0.8Sr0.2MnO3

被引:10
作者
Sergeenkov, S.
Mucha, J.
Pekala, M.
Drozd, V.
Ausloos, M.
机构
[1] Univ Fed Paraiba, CCEN, Dept Fis, BR-58051970 Joao Pessoa, Paraiba, Brazil
[2] Polish Acad Sci, Inst Low Temp & Struct Res, PL-50950 Wroclaw, Poland
[3] Univ Warsaw, Dept Chem, PL-02089 Wroclaw, Poland
[4] Florida Int Univ, Ctr Study Matter Extteme Conditions, Miami, FL 33199 USA
[5] Kiev Natl Taras Sevchenko Univ, Dept Chem, UA-01033 Kiev, Ukraine
[6] Univ Liege, Inst Phys, SUPRATECS, B-4000 Liege, Belgium
关键词
D O I
10.1063/1.2802189
中图分类号
O59 [应用物理学];
学科分类号
摘要
Some possible connection between spin and charge degrees of freedom in magnetoresistive manganites is investigated through a thorough experimental study of the magnetic [alternating current susceptibility and direct current (dc) magnetization) and transport (resistivity and thermal conductivity) properties. Measurements are reported in the case of well characterized polycrystalline La0.8Sr0.2MnO3 samples. The experimental results suggest rather strong field-induced polarization effects in our material, clearly indicating the presence of ordered ferromagnetic regions inside the semiconducting phase. Using an analytical expression which fits the spontaneous dc magnetization, the temperature and magnetic field dependences of both electrical resistivity and thermal conductivity data are found to be well reproduced through a universal scenario based on two mechanisms: (i) a magnetization dependent spin polaron hopping influenced by a Zeeman splitting effect and (ii) properly defined thermally excited polaron states which have to be taken into account in order to correctly describe the behavior of the less conducting region. Using the experimentally found values of the magnetic and electron localization temperatures, we obtain L=0.5 nm and m(p) = 3.2 me for estimates of the localization length (size of the spin polaron) and effective polaron mass, respectively. (C) 2007 American Institute of Physics.
引用
收藏
页数:9
相关论文
共 35 条
[1]   Low-temperature resistivity minima in single-crystalline and ceramic La0.8Sr0.2MnO3:: Mesoscopic transport and intergranular tunneling [J].
Auslender, M ;
Kar'kin, AE ;
Rozenberg, E ;
Gorodetsky, G .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (11) :6639-6641
[2]   Unusual thermoelectric behavior of packed crystalline granular metals [J].
Ausloos, M ;
Pekala, M ;
Latuch, J ;
Mucha, J ;
Vanderbemden, P ;
Vertruyen, B ;
Cloots, R .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (12) :7338-7345
[3]   Magnon-polaron and spin-polaron signatures in the specific heat and electrical resistivity of La0.6Y0.1Ca0.3MnO3 in zero magnetic field and the effect of Mn-O-Mn bond environment -: art. no. 174436 [J].
Ausloos, M ;
Hubert, L ;
Dorbolo, S ;
Gilabert, A ;
Cloots, R .
PHYSICAL REVIEW B, 2002, 66 (17) :1744361-1744368
[4]   Modulated charge ordering process in Sm0.5Ca0.5Mn1-xCrxO3 manganites [J].
Barnabe, A ;
Hervieu, M ;
Martin, C ;
Maignan, A ;
Raveau, B .
JOURNAL OF MATERIALS CHEMISTRY, 1998, 8 (06) :1405-1411
[5]   Spin-wave scattering at low temperatures in manganite films [J].
Chen, XJ ;
Habermeier, HU ;
Zhang, CL ;
Zhang, H ;
Almasan, CC .
PHYSICAL REVIEW B, 2003, 67 (13)
[6]   Structural and magnetic phase diagrams of La1-xSrxMnO3 and Pr1-ySryMnO3 -: art. no. 094431 [J].
Chmaissem, O ;
Dabrowski, B ;
Kolesnik, S ;
Mais, J ;
Jorgensen, JD ;
Short, S .
PHYSICAL REVIEW B, 2003, 67 (09)
[7]   Nanocomputing by field-coupled nanomagnets [J].
Csaba, G ;
Imre, A ;
Bernstein, GH ;
Porod, W ;
Metlushko, V .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2002, 1 (04) :209-213
[8]   Colossal magnetoresistant materials: The key role of phase separation [J].
Dagotto, E ;
Hotta, T ;
Moreo, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2001, 344 (1-3) :1-153
[9]   Spin-polarized intergrain tunneling in La-2/Sr-3(1)/3MnO3 [J].
Hwang, HY ;
Cheong, SW ;
Ong, NP ;
Batlogg, B .
PHYSICAL REVIEW LETTERS, 1996, 77 (10) :2041-2044
[10]   THERMAL-CONDUCTIVITY OF THE AMORPHOUS ALLOY FE40NI40P14B6 BETWEEN 80-K AND 300-K [J].
JEZOWSKI, A ;
MUCHA, J ;
POMPE, G .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1987, 20 (11) :1500-1506