DNA Functionalized Carbon Nanotubes for Nonbiological Applications

被引:27
作者
Paul, Ambarish [2 ]
Bhattacharya, Baidurya [1 ]
机构
[1] Indian Inst Technol, Dept Civil Engn, Kharagpur 721302, W Bengal, India
[2] Indian Inst Technol, Adv Technol Dev Ctr, Kharagpur 721302, W Bengal, India
关键词
Carbon nanotube; Characterization; Deoxyribonucleic acid; Functionalized; Non-covalent; Sensors; SINGLE-STRANDED-DNA; SCANNING-TUNNELING-MICROSCOPY; INDUCED CIRCULAR-DICHROISM; LABEL-FREE; ELECTRICAL-TRANSPORT; HYBRIDIZATION; IMMOBILIZATION; FLUORESCENCE; OXIDATION; BINDING;
D O I
10.1080/10426911003720755
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Functionalization of an inorganic nanomaterial like carbon nanotube (CNT) with biological macromolecules like deoxyribonucleic acid (DNA) leads to the formation of hybrid materials with fascinating properties. This article describes the structures of CNT and DNA, portrays the van der Waals force-dominant non-covalent pi-pi stacking interactions formed due to their self-assembly, and reviews the electronic, electrochemical, optical, and chemical properties of DNA-functionalized CNTs (DFCs). Current computational developments in simulating and predicting CNT-DNA interactions, alternate functionalization techniques, conformational changes of DNA bases, etc. are discussed. Various characterization techniques using scanning electron microscopy (SEM), scanning tunneling microscopy (STM), atomic force microscopy (AFM), UV-visible, Photoluminescence (PL) and Raman spectroscopy, etc. that help explain DFC properties are detailed. Potential applications for this hybrid material in nanoelectronics and chemical sensors as well as in chirality-based separation of metallic nanotubes from semiconducting ones are considered. The article concludes with current challenges, future directions of research, and prospective applications in this field.
引用
收藏
页码:891 / 908
页数:18
相关论文
共 94 条
[1]   ELECTRON-ENERGY-LOSS SPECTROSCOPY OF CARBON NANOMETER-SIZE TUBES [J].
AJAYAN, PM ;
IIJIMA, S ;
ICHIHASHI, T .
PHYSICAL REVIEW B, 1993, 47 (11) :6859-6862
[2]   Liquid crystals of DNA-stabilized carbon nanotubes [J].
Badaire, S ;
Zakri, C ;
Maugey, M ;
Derré, A ;
Barisci, JN ;
Wallace, G ;
Poulin, P .
ADVANCED MATERIALS, 2005, 17 (13) :1673-+
[3]   Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes: Synthesis and hybridization [J].
Baker, SE ;
Cai, W ;
Lasseter, TL ;
Weidkamp, KP ;
Hamers, RJ .
NANO LETTERS, 2002, 2 (12) :1413-1417
[4]   Shear and AC Field Enhanced Carbon Nanotube Impedance Assay for Rapid, Sensitive, and Mismatch-Discriminating DNA Hybridization [J].
Basuray, Sagnik ;
Senapati, Satyajyoti ;
Aijian, Andrew ;
Mahon, Andrew R. ;
Chang, Hsueh-Chia .
ACS NANO, 2009, 3 (07) :1823-1830
[5]   Aligned carbon nanotube thin films for DNA electrochemical sensing [J].
Berti, F. ;
Lozzi, L. ;
Palchetti, I. ;
Santucci, S. ;
Marrazza, G. .
ELECTROCHIMICA ACTA, 2009, 54 (22) :5035-5041
[6]   Two-dimensional self-assembly and complementary base-pairing between amphiphile nucleotides on graphite [J].
Bestel, Isabelle ;
Campins, Nathalie ;
Marchenko, Alexandr ;
Fichou, Denis ;
Grinstaff, Mark W. ;
Barthelemy, Philippe .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2008, 323 (02) :435-440
[7]  
Burns Daniel J., 2007, International Journal of Nanomanufacturing, V1, P799
[8]  
BURNS DJ, 2007, SMA S
[9]   DNA nanotechnology of carbon nanotube cells: physico-chemical models of self-organization and properties [J].
Buzaneva, E ;
Karlash, A ;
Yakovkin, K ;
Shtogun, Y ;
Putselyk, S ;
Zherebetskiy, D ;
Gorchinskiy, A ;
Popova, G ;
Prilutska, S ;
Matyshevska, O ;
Prilutskyy, Y ;
Lytvyn, P ;
Scharff, P ;
Eklund, P .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2002, 19 (1-2) :41-45
[10]   Atomic force microscopy studies of DNA-wrapped carbon nanotube structure and binding to quantum dots [J].
Campbell, Jennifer F. ;
Tessmer, Ingrid ;
Thorp, H. Holden ;
Erie, Dorothy A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (32) :10648-10655