Upper total domination in claw-free graphs

被引:11
作者
Favaron, O [1 ]
Henning, MA
机构
[1] Univ Paris 11, Lab Rech & Informat, F-91405 Orsay, France
[2] Univ Natal, Sch Math Stat & Informat Technol, ZA-3209 Pietermaritzburg, South Africa
关键词
claw-free graphs; minimum degree; upper total domination;
D O I
10.1002/jgt.10134
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S (other than itself). The maximum cardinality of a minimal total dominating set of G is the upper total domination number of G, denoted by Gamma(t)(G). We establish bounds on Gamma(t)(G) for claw-free graphs G in terms of the number n of vertices and the minimum degree delta of G. We show that Gamma(t)(G) less than or equal to 2(n + 1)/3 if delta is an element of {1,2}, Gamma(t)(G) less than or equal to 4n/(delta + 3) if delta is an element of {3,4}, and Gamma(t)(G) less than or equal to n/2 if delta greater than or equal to 5. The extremal graphs are characterized. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:148 / 158
页数:11
相关论文
共 9 条
  • [1] Brigham R.C., 2000, J. Comb. Math. Comb. Comput., V34, P81
  • [2] TOTAL DOMINATION IN GRAPHS
    COCKAYNE, EJ
    DAWES, RM
    HEDETNIEMI, ST
    [J]. NETWORKS, 1980, 10 (03) : 211 - 219
  • [3] Favaron O, 2000, J GRAPH THEOR, V34, P9, DOI 10.1002/(SICI)1097-0118(200005)34:1<9::AID-JGT2>3.0.CO
  • [4] 2-O
  • [5] FLANDRIN E, 1997, CLAY FREE GRAPHS SUR, V164, P87
  • [6] Haynes T. W., 1998, FUNDAMENTALS DOMINAT
  • [7] HAYNES TW, 1998, EDITORS DOMINATION G
  • [8] Henning MA, 2000, J GRAPH THEOR, V35, P21, DOI 10.1002/1097-0118(200009)35:1<21::AID-JGT3>3.0.CO
  • [9] 2-F