MIXED METHODS FOR ELASTODYNAMICS WITH WEAK SYMMETRY

被引:32
作者
Arnold, Douglas N. [1 ]
Lee, Jeonghun J. [2 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Aalto Univ, Dept Math & Syst Anal, FI-00076 Espoo, Finland
基金
美国国家科学基金会;
关键词
mixed finite element; elastodynamics; weak symmetry; FINITE-ELEMENT METHODS; ELASTICITY ELEMENT; LINEAR ELASTICITY; PLANE ELASTICITY; STRESS SYMMETRY; FAMILY; DOMAIN;
D O I
10.1137/13095032X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the application to elastodynamic problems of mixed finite element methods for elasticity with weakly imposed symmetry of stress. Our approach leads to a semidiscrete method which consists of a system of ordinary differential equations without algebraic constraints. Our error analysis, which is based on a new elliptic projection operator, applies to several mixed finite element spaces developed for elastostatics. The error estimates we obtain are robust for nearly incompressible materials.
引用
收藏
页码:2743 / 2769
页数:27
相关论文
共 26 条
[1]   EQUILIBRIUM FINITE-ELEMENTS FOR THE LINEAR ELASTIC PROBLEM [J].
AMARA, M ;
THOMAS, JM .
NUMERISCHE MATHEMATIK, 1979, 33 (04) :367-383
[2]  
[Anonymous], 1991, SPRINGER SER COMPUT
[3]  
[Anonymous], PROCEEDINGS OF THE W
[4]  
Arnold D. N., 1984, JAPAN J APPL MATH, V1, P347
[5]   MIXED AND NONCONFORMING FINITE-ELEMENT METHODS - IMPLEMENTATION, POSTPROCESSING AND ERROR-ESTIMATES [J].
ARNOLD, DN ;
BREZZI, F .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (01) :7-32
[6]   A FAMILY OF HIGHER-ORDER MIXED FINITE-ELEMENT METHODS FOR PLANE ELASTICITY [J].
ARNOLD, DN ;
DOUGLAS, J ;
GUPTA, CP .
NUMERISCHE MATHEMATIK, 1984, 45 (01) :1-22
[7]   Mixed finite element methods for linear elasticity with weakly imposed symmetry [J].
Arnold, Douglas N. ;
Falk, Richard S. ;
Winther, Ragnar .
MATHEMATICS OF COMPUTATION, 2007, 76 (260) :1699-1723
[8]   A new family of mixed finite elements for the linear elastodynamic problem [J].
Bécache, E ;
Joly, P ;
Tsogka, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (06) :2109-2132
[9]   A priori error estimation for the dual mixed finite element method of the elastodynamic problem in a polygonal domain, II [J].
Boulaajine, L. ;
Farhloul, M. ;
Paquet, L. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (05) :1288-1310
[10]  
Cazenave T., 1998, Oxford Lecture Ser. Math. Appl., V13