4K-memristor analog-grade passive crossbar circuit

被引:98
作者
Kim, H. [1 ,2 ]
Mahmoodi, M. R. [1 ]
Nili, H. [1 ]
Strukov, D. B. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[2] Inha Univ, Dept Elect Engn, Incheon, South Korea
关键词
SYNAPSES; MEMORY; RECOGNITION; SYSTEM;
D O I
10.1038/s41467-021-25455-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The superior density of passive analog-grade memristive crossbar circuits enables storing large neural network models directly on specialized neuromorphic chips to avoid costly off-chip communication. To ensure efficient use of such circuits in neuromorphic systems, memristor variations must be substantially lower than those of active memory devices. Here we report a 64 x 64 passive crossbar circuit with -99% functional nonvolatile metal-oxide memristors. The fabrication technology is based on a foundry-compatible process with etchdown patterning and a low-temperature budget. The achieved <26% coefficient of variance in memristor switching voltages is sufficient for programming a 4K-pixel gray-scale pattern with a <4% relative tuning error on average. Analog properties are also successfully verified via experimental demonstration of a 64 x 10 vector-by-matrix multiplication with an average 1% relative conductance import accuracy to model the MNIST image classification by ex-situ trained single-layer perceptron, and modeling of a large-scale multilayer perceptron classifier based on more advanced conductance tuning algorithm.
引用
收藏
页数:11
相关论文
共 55 条
[1]   3-D Memristor Crossbars for Analog and Neuromorphic Computing Applications [J].
Adam, Gina C. ;
Hoskins, Brian D. ;
Prezioso, Mirko ;
Merrikh-Bayat, Farnood ;
Chakrabarti, Bhaswar ;
Strukov, Dmitri B. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (01) :312-318
[2]   High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm [J].
Alibart, Fabien ;
Gao, Ligang ;
Hoskins, Brian D. ;
Strukov, Dmitri B. .
NANOTECHNOLOGY, 2012, 23 (07)
[3]   Neuromorphic Learning and Recognition With One-Transistor-One-Resistor Synapses and Bistable Metal Oxide RRAM [J].
Ambrogio, Stefano ;
Balatti, Simone ;
Milo, Valerio ;
Carboni, Roberto ;
Wang, Zhong-Qiang ;
Calderoni, Alessandro ;
Ramaswamy, Nirmal ;
Ielmini, Daniele .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (04) :1508-1515
[4]   In-Memory Vector-Matrix Multiplication in Monolithic Complementary Metal-Oxide-Semiconductor-Memristor Integrated Circuits: Design Choices, Challenges, and Perspectives [J].
Amirsoleimani, Amirali ;
Alibart, Fabien ;
Yon, Victor ;
Xu, Jianxiong ;
Pazhouhandeh, M. Reza ;
Ecoffey, Serge ;
Beilliard, Yann ;
Genov, Roman ;
Drouin, Dominique .
ADVANCED INTELLIGENT SYSTEMS, 2020, 2 (11)
[5]  
[Anonymous], MNIST DATABASE HANDW
[6]  
[Anonymous], 2017, CoRR
[7]  
Bavandpour M., 2018, INT EL DEVICES MEET
[8]   aCortex: An Energy-Efficient Multipurpose Mixed-Signal Inference Accelerator [J].
Bavandpour, Mohammad ;
Mahmoodi, Mohammad R. ;
Strukov, Dmitri B. .
IEEE JOURNAL ON EXPLORATORY SOLID-STATE COMPUTATIONAL DEVICES AND CIRCUITS, 2020, 6 (01) :98-106
[9]   Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits [J].
Bayat, F. Merrikh ;
Prezioso, M. ;
Chakrabarti, B. ;
Nili, H. ;
Kataeva, I. ;
Strukov, D. .
NATURE COMMUNICATIONS, 2018, 9
[10]   Resistive switching characteristics and mechanism of thermally grown WOx thin films [J].
Biju, Kuyyadi P. ;
Liu, Xinjun ;
Siddik, Manzar ;
Kim, Seonghyun ;
Shin, Jungho ;
Kim, Insung ;
Ignatiev, Alex ;
Hwang, Hyunsang .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (06)