Machine learning-based rapid diagnosis of human borderline ovarian cancer on second-harmonic generation images

被引:19
作者
Wang, Guangxing [1 ,2 ]
Sun, Yang [3 ]
Jiang, Shuisen [1 ]
Wu, Guizhu [4 ]
Liao, Wenliang [1 ]
Chen, Yuwei [3 ]
Lin, Zexi [5 ,6 ]
Liu, Zhiyi [7 ]
Zhuo, Shuangmu [1 ]
机构
[1] Jimei Univ, Sch Sci, Xiamen 361021, Peoples R China
[2] Xiamen Univ, Ctr Mol Imaging & Translat Med, Sch Publ Hlth, State Key Lab Mol Vaccinol & Mol Diagnost, Xiamen 361102, Peoples R China
[3] Fujian Med Univ, Fujian Canc Hosp, Dept Gynecol, Canc Hosp, Fuzhou 350014, Peoples R China
[4] Tongji Univ, Shanghai Matern & Infant Hosp 1, Sch Med, Shanghai 200030, Peoples R China
[5] Fujian Normal Univ, Minist Educ, Key Lab OptoElect Sci & Technol Med, Fuzhou 350007, Peoples R China
[6] Fujian Normal Univ, Fujian Prov Key Lab Photon Technol, Fuzhou 350007, Peoples R China
[7] Zhejiang Univ, Coll Opt Sci & Engn, State Key Lab Modern Opt Instrumentat, Hangzhou 310058, Peoples R China
来源
BIOMEDICAL OPTICS EXPRESS | 2021年 / 12卷 / 09期
基金
中国国家自然科学基金;
关键词
EPIDEMIOLOGY; ULTRASOUND; BENIGN;
D O I
10.1364/BOE.429918
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Regarding growth pattern and cytological characteristics, borderline ovarian tumors fall between benign and malignant, but they tend to develop malignancy. Currently, it is difficult to accurately diagnose ovarian cancer using common medical imaging methods, and histopathological examination is routinely used to obtain a definitive diagnosis. However, such examination requires experienced pathologists, being labor-intensive, time-consuming, and possibly leading to interobserver bias. By using second-harmonic generation imaging and k-nearest neighbors classifier in conjunction with automated machine learning tree-based pipeline optimization tool, we developed a computer-aided diagnosis method to classify ovarian tissues as being malignant, benign, borderline, and normal, obtaining areas under the receiver operating characteristic curve of 1.00, 0.99, 0.98, and 0.97, respectively. These results suggest that diagnosis based on second-harmonic generation images and machine learning can support the rapid and accurate detection of ovarian cancer in clinical practice. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:5658 / 5669
页数:12
相关论文
共 37 条
[1]   Migration dynamics of ovarian epithelial cells on micro-fabricated image-based models of normal and malignant stroma [J].
Alkmin, Samuel ;
Brodziski, Rebecca ;
Simon, Haleigh ;
Hinton, Daniel ;
Goldsmith, Randall H. ;
Patankar, Manish ;
Campagnola, Paul. J. .
ACTA BIOMATERIALIA, 2019, 100 :92-104
[2]   Measuring fiber alignment in electrospun scaffolds: a user's guide to the 2D fast Fourier transform approach [J].
Ayres, Chantal E. ;
Jha, B. Shekhar ;
Meredith, Hannah ;
Bowman, James R. ;
Bowlin, Gary L. ;
Henderson, Scott C. ;
Simpson, David G. .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2008, 19 (05) :603-621
[3]   Histology: a unique area of the medical laboratory [J].
Buesa, Rene J. .
ANNALS OF DIAGNOSTIC PATHOLOGY, 2007, 11 (02) :137-141
[4]   Fast discrete curvelet transforms [J].
Candes, Emmanuel ;
Demanet, Laurent ;
Donoho, David ;
Ying, Lexing .
MULTISCALE MODELING & SIMULATION, 2006, 5 (03) :861-899
[5]   Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure [J].
Chen, Xiyi ;
Nadiarynkh, Oleg ;
Plotnikov, Sergey ;
Campagnola, Paul J. .
NATURE PROTOCOLS, 2012, 7 (04) :654-669
[6]   Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer [J].
Cox, Thomas R. ;
Erler, Janine T. .
DISEASE MODELS & MECHANISMS, 2011, 4 (02) :165-178
[7]   Altered organization of collagen fibers in the uninvolved human colon mucosa 10 cm and 20 cm away from the malignant tumor [J].
Despotovic, Sanja Z. ;
Milkcvic, Dorde N. ;
Krmpot, Aleksandar J. ;
Pavlovic, Aleksandra M. ;
Zivanovic, Vladimir D. ;
Krivokapic, Zoran ;
Pavlovic, Vladimir B. ;
Levic, Steva ;
Nikolic, Gorana ;
Rabasovic, Mihailo D. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[8]  
Fortin FA, 2012, J MACH LEARN RES, V13, P2171
[9]  
Goldberger J., 2004, Adv. Neural Inf. Process. Syst., V17, DOI DOI 10.5555/2976040.2976105
[10]  
Gwen G. a, 2009, AM J SURG PATHOL, V33, P323