A 51-pJ/Pixel 33.7-dB PSNR 4x Compressive CMOS Image Sensor With Column-Parallel Single-Shot Compressive Sensing

被引:17
作者
Park, Chanmin [1 ]
Zhao, Wenda [2 ]
Park, Injun [1 ]
Sun, Nan [2 ,3 ]
Chae, Youngcheol [1 ]
机构
[1] Yonsei Univ, Dept Elect & Elect Engn, Seoul 03722, South Korea
[2] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
[3] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
关键词
Always-on; CMOS image sensor (CIS); column-parallel compressive sensing; compressed sensing; compressive sensing (CS); dynamic single-slope (SS) ADC; low energy CS image sensor; single-shot CS; switched-capacitor (SC) matrix multiplier; ADC;
D O I
10.1109/JSSC.2021.3071875
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents a CMOS image sensor (CIS) with column-parallel single-shot compressive sensing (CS) for always-on Internet-of-Things (IoT) application, which achieves an energy efficiency of 51 pJ/pixel, while maintaining high image quality of PSNR > 33.7 dB and SSIM > 0.89. This is enabled by an energy-efficient encoder, which replaces a densely populated CS encoding matrix with a highly sparse pseudo-diagonal one. Since the proposed column-parallel CS encoder can be implemented directly at pixel outputs with an energy-efficient switched-capacitor matrix multiplier, data compression is achieved prior to the pixel digitization, thereby greatly reducing ADC power, data size, and I/O power. The energy efficiency of the image sensor is further improved by using dynamic single-slope ADCs. A prototype VGA image sensor implemented in a 110-nm CMOS process consumes only 0.7 mW at 45 frames/s. The corresponding energy per pixel (51 pJ/pixel) amounts to more than 5x improvement over the previous low-energy benchmark for CS image sensors.
引用
收藏
页码:2503 / 2515
页数:13
相关论文
共 36 条
  • [1] [Anonymous], 2007, IAENG INT J APPL MAT
  • [2] MATIA:: A programmable 80 μW/frame CMOS block matrix transform imager architecture
    Bandyopadhyay, A
    Lee, J
    Robucci, RW
    Hasler, P
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2006, 41 (03) : 663 - 672
  • [3] Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information
    Candès, EJ
    Romberg, J
    Tao, T
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) : 489 - 509
  • [4] Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
  • [5] A Sub-Nyquist Rate Compressive Sensing Data Acquisition Front-End
    Chen, Xi
    Sobhy, Ehab Ahmed
    Yu, Zhuizhuan
    Hoyos, Sebastian
    Silva-Martinez, Jose
    Palermo, Samuel
    Sadler, Brian M.
    [J]. IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2012, 2 (03) : 542 - 551
  • [6] A Sub-Nyquist Rate Sampling Receiver Exploiting Compressive Sensing
    Chen, Xi
    Yu, Zhuizhuan
    Hoyos, Sebastian
    Sadler, Brian M.
    Silva-Martinez, Jose
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2011, 58 (03) : 507 - 520
  • [7] Compressive Sensing via Nonlocal Low-Rank Regularization
    Dong, Weisheng
    Shi, Guangming
    Li, Xin
    Ma, Yi
    Huang, Feng
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (08) : 3618 - 3632
  • [8] Compressed sensing
    Donoho, DL
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) : 1289 - 1306
  • [9] Compressed Sensing Analog Front-End for Bio-Sensor Applications
    Gangopadhyay, Daibashish
    Allstot, Emily G.
    Dixon, Anna M. R.
    Natarajan, Karthik
    Gupta, Subhanshu
    Allstot, David J.
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2014, 49 (02) : 426 - 438
  • [10] Guo W., 2015, 2015 IEEE CUSTOM INT, P1