p-converse to a theorem of Gross-Zagier, Kolyvagin and Rubin

被引:14
作者
Burungale, Ashay A. [1 ]
Tian, Ye [2 ,3 ]
机构
[1] CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, HLM, MCM, Beijing 100190, Peoples R China
基金
美国国家科学基金会;
关键词
ADIC L-FUNCTIONS; ELLIPTIC-CURVES; MAIN CONJECTURES; RATIONAL-POINTS; IWASAWA THEORY; SELMER GROUPS; FORMULA; CHARACTERS;
D O I
10.1007/s00222-019-00929-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be a CM elliptic curve over the rationals and p>3-Selmer group Selp infinity(E/Q) and the complex L-function L(s,E/Q). In particular, the Tate-Shafarevich group X(E/Q) is finite whenever corankZpSelp infinity(E/Q)=1. We also prove an analogous p-converse for CM abelian varieties arising from weight two elliptic CM modular forms with trivial central character. For non-CM elliptic curves over the rationals, first general results towards such a p-converse theorem are independently due to Skinner (A converse to a theorem of Gross, Zagier and Kolyvagin, , 2014) and Zhang (Camb J Math 2(2):191-253, 2014).
引用
收藏
页码:211 / 253
页数:43
相关论文
共 50 条
[1]   Non-triviality of CM points in ring class field towers [J].
Aflalo, Esther ;
Nekovar, Jan .
ISRAEL JOURNAL OF MATHEMATICS, 2010, 175 (01) :225-284
[2]   Anticyclotomic Iwasawa theory of CM elliptic curves [J].
Agboola, Adebisi ;
Howard, Benjamin .
ANNALES DE L INSTITUT FOURIER, 2006, 56 (04) :1001-1048
[3]  
[Anonymous], 2004, London Math. Soc. Lecture Note Ser, V320, P471, DOI DOI 10.1017/CBO9780511721267.014
[4]   Anticyclotomic main conjectures for CM modular forms [J].
Arnold, Trevor .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 606 :41-78
[5]  
Banff AB, 2000, CRM P LECT NOTES, V24, P367
[6]   GENERALIZED HEEGNER CYCLES AND p-ADIC RANKIN L-SERIES [J].
Bertolini, Massimo ;
Darmon, Henri ;
Prasanna, Kartik .
DUKE MATHEMATICAL JOURNAL, 2013, 162 (06) :1033-1148
[7]   p-ADIC RANKIN L-SERIES AND RATIONAL POINTS ON CM ELLIPTIC CURVES [J].
Bertolini, Massimo ;
Darmon, Henri ;
Prasanna, Kartik .
PACIFIC JOURNAL OF MATHEMATICS, 2012, 260 (02) :261-303
[8]   NONVANISHING THEOREMS FOR L-FUNCTIONS OF MODULAR-FORMS AND THEIR DERIVATIVES [J].
BUMP, D ;
FRIEDBERG, S ;
HOFFSTEIN, J .
INVENTIONES MATHEMATICAE, 1990, 102 (03) :543-618
[9]  
Burungale A., 2019, ARXIV190809512
[10]   On the non-triviality of the p-adic Abel-Jacobi image of generalised Heegner cycles modulo p, II: Shimura curves [J].
Burungale, Ashay A. .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2017, 16 (01) :189-222