Levinson theorem for the Dirac equation in D+1 dimensions -: art. no. 062715

被引:28
|
作者
Gu, XY
Ma, ZQ
Dong, SH
机构
[1] China Ctr Adv Sci & Technol, World Lab, Beijing 100080, Peoples R China
[2] Inst High Energy Phys, Beijing 100039, Peoples R China
[3] Inst Mexicano Petr, Programa Ingn Mol, Mexico City 07730, DF, Mexico
来源
PHYSICAL REVIEW A | 2003年 / 67卷 / 06期
关键词
D O I
10.1103/PhysRevA.67.062715
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In terms of the generalized Sturm-Liouville theorem, the Levinson theorem for the Dirac equation with a spherically symmetric potential in D+1 dimensions is uniformly established as a relation between the total number of bound states and the sum of the phase shifts of the scattering states at E=+/-M with a given angular momentum. The critical case, where the Dirac equation has a half bound state, is analyzed in detail. A half bound state is a zero-momentum solution if its wave function is finite but does not decay fast enough at infinity to be square integrable.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Uniqueness theorem for stationary black hole solutions of σ-models in five dimensions -: art. no. 084025
    Rogatko, M
    PHYSICAL REVIEW D, 2004, 70 (08): : 084025 - 1
  • [42] On the Dirac field in the Palatini form of 1/R gravity -: art. no. 044020
    Vollick, DN
    PHYSICAL REVIEW D, 2005, 71 (04): : 044020 - 1
  • [43] Dirac-like monopoles in three dimensions and their possible influences on the dynamics of particles -: art. no. 085024
    Abreu, EMC
    Hott, M
    Helayël-Neto, JA
    Moura-Melo, WA
    PHYSICAL REVIEW D, 2002, 65 (08) : 850241 - 850249
  • [44] Stochastic magnetohydrodynamic turbulence in space dimensions d≥2 -: art. no. 056411
    Hnatich, M
    Honkonen, J
    Jurcisin, M
    PHYSICAL REVIEW E, 2001, 64 (05):
  • [45] d-Mott phases in one and two dimensions -: art. no. 037006
    Läuchli, A
    Honerkamp, C
    Rice, TM
    PHYSICAL REVIEW LETTERS, 2004, 92 (03)
  • [46] Exponents and bounds for uniform spanning trees in d dimensions -: art. no. 027103
    Read, N
    PHYSICAL REVIEW E, 2004, 70 (02):
  • [47] The Dirac equation with a Coulomb potential in D dimensions
    Dong, SH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (18): : 4977 - 4986
  • [48] On the analysis of the Eigenvalues of the Dirac equation with A 1/r potential in D dimensions
    Dong, SH
    Lozada-Cassou, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2004, 13 (05): : 917 - 931
  • [49] SO(D+1)-invariant regularization in D Euclidean dimensions
    Gasparakis, C
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (30): : 5429 - 5461
  • [50] D-DIMENSIONAL GRAVITY FROM (D+1) DIMENSIONS
    RIPPL, S
    ROMERO, C
    TAVAKOL, R
    CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (10) : 2411 - 2421