Levinson theorem for the Dirac equation in D+1 dimensions -: art. no. 062715

被引:28
|
作者
Gu, XY
Ma, ZQ
Dong, SH
机构
[1] China Ctr Adv Sci & Technol, World Lab, Beijing 100080, Peoples R China
[2] Inst High Energy Phys, Beijing 100039, Peoples R China
[3] Inst Mexicano Petr, Programa Ingn Mol, Mexico City 07730, DF, Mexico
来源
PHYSICAL REVIEW A | 2003年 / 67卷 / 06期
关键词
D O I
10.1103/PhysRevA.67.062715
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In terms of the generalized Sturm-Liouville theorem, the Levinson theorem for the Dirac equation with a spherically symmetric potential in D+1 dimensions is uniformly established as a relation between the total number of bound states and the sum of the phase shifts of the scattering states at E=+/-M with a given angular momentum. The critical case, where the Dirac equation has a half bound state, is analyzed in detail. A half bound state is a zero-momentum solution if its wave function is finite but does not decay fast enough at infinity to be square integrable.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Levinson's theorem for the Klein-Gordon equation in two dimensions
    Dong, Shi-Hai
    Hou, Xi-Wen
    Ma, Zhong-Qi
    Physical Review A. Atomic, Molecular, and Optical Physics, 1999, 59 (02):
  • [32] Friedel theorem for Dirac fermions in D dimensions
    Lin, De-Hone
    PHYSICAL REVIEW A, 2006, 74 (03):
  • [33] Remarks on Dirac-like monopoles, Maxwell and Maxwell-Chern-Simons electrodynamics in D=2+1 dimensions -: art. no. 065013
    Moura-Melo, WA
    Helayël-Neto, JA
    PHYSICAL REVIEW D, 2001, 63 (06)
  • [34] Stability of Dirac sheet configurations -: art. no. 097901
    Ilgenfritz, EM
    Müller-Preussker, M
    Martemyanov, BV
    van Baal, P
    PHYSICAL REVIEW D, 2004, 69 (09): : 4
  • [35] (Re)constructing dimensions -: art. no. 045
    Rabadán, R
    Shiu, G
    JOURNAL OF HIGH ENERGY PHYSICS, 2003, (05):
  • [36] Theory of the anomalous Hall effect from the Kubo formula and the Dirac equation -: art. no. 014416
    Crépieux, A
    Bruno, P
    PHYSICAL REVIEW B, 2001, 64 (01)
  • [37] Vacuum polarization in d+1/2 dimensions
    Fosco, CD
    Malbouisson, APC
    Roditi, I
    PHYSICS LETTERS B, 2005, 609 (3-4) : 430 - 436
  • [38] Random hyperbolic graphs in d+1 dimensions
    Budel, Gabriel
    Kitsak, Maksim
    Aldecoa, Rodrigo
    Zuev, Konstantin
    Krioukov, Dmitri
    PHYSICAL REVIEW E, 2024, 109 (05)
  • [39] Patterns of chiral symmetry breaking and a candidate for a C theorem in four dimensions -: art. no. 085042
    Levinsen, J
    PHYSICAL REVIEW D, 2002, 65 (08) : 5
  • [40] Gravitational dynamics in s+1+1 dimensions -: art. no. 064015
    Gergely, LA
    Kovács, Z
    PHYSICAL REVIEW D, 2005, 72 (06):