A KINETIC APPROACH OF THE BI-TEMPERATURE EULER MODEL

被引:4
作者
Brull, Stephane [1 ]
Dubroca, Bruno [2 ]
Prigent, Corentin [1 ]
机构
[1] Univ Bordeaux, CNRS, Bordeaux INP IMB, UMR 5251, F-33400 Talence, France
[2] Univ Bordeaux, Lab Composites ThermoStruct LCTS, UMR 5801 CNRS Herakles Safran CEA UBx, 3 Allee de La Boetie, F-33600 Pessac, France
关键词
Bgk model; asympotic preserving scheme; nonconservative hyperbolic system; plasma physics; kinetic scheme; ASYMPTOTIC-PRESERVING SCHEME; NUMERICAL APPROXIMATION; BGK MODEL; SYSTEM;
D O I
10.3934/krm.2020002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are interested in the numerical approximation of the bi-temperature Euler equations, which is a non conservative hyperbolic system introduced in [4]. We consider a conservative underlying kinetic model, the Vlasov-BGK-Poisson system. We perform a scaling on this system in order to obtain its hydrodynamic limit. We present a deterministic numerical method to approximate this kinetic system. The method is shown to be Asymptotic-Preserving in the hydrodynamic limit, which means that any stability condition of the method is independant of any parameter epsilon, with epsilon -> 0. We prove that the method is, under appropriate choices, consistant with the solution for bi-temperature Euler. Finally, our method is compared to methods for the fluid model (HLL, Suliciu).
引用
收藏
页码:33 / 61
页数:29
相关论文
共 29 条
  • [1] A comment on the computation of non-conservative products
    Abgrall, Remi
    Karni, Smadar
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (08) : 2759 - 2763
  • [2] The Gaussian-BGK model of Boltzmann equation with small Prandtl number
    Andries, P
    Le Tallec, P
    Perlat, JP
    Perthame, B
    [J]. EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2000, 19 (06) : 813 - 830
  • [3] [Anonymous], 1984, INTRO PLASMA PHYS CO
  • [4] MODELLING AND NUMERICAL APPROXIMATION FOR THE NONCONSERVATIVE BITEMPERATURE EULER MODEL
    Aregba-Driollet, D.
    Breil, J.
    Brull, S.
    Dubroca, B.
    Estibals, E.
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (04): : 1353 - 1383
  • [5] Aregba-Driollet D, 2019, COMMUN MATH SCI, V17, P1135
  • [6] An Asymptotically Stable Semi-Lagrangian scheme in the Quasi-neutral Limit
    Belaouar, R.
    Crouseilles, N.
    Degond, P.
    Sonnendruecker, E.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2009, 41 (03) : 341 - 365
  • [7] A GENERAL CONSISTENT BGK MODEL FOR GAS MIXTURES
    Bobylev, Alexander, V
    Bisi, Marzia
    Groppi, Maria
    Spiga, Giampiero
    Potapenko, Irina F.
    [J]. KINETIC AND RELATED MODELS, 2018, 11 (06) : 1377 - 1393
  • [8] Bouchut F, 2004, FRONT MATH
  • [9] Local discrete velocity grids for deterministic rarefied flow simulations
    Brull, S.
    Mieussens, L.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 266 : 22 - 46
  • [10] Brull S., PREPRINT