Multiple-Relaxation-Time Lattice Boltzmann scheme for fractional advection-diffusion equation

被引:18
|
作者
Cartalade, Alain [1 ]
Younsi, Amina [1 ,2 ]
Neel, Marie-Christine [3 ]
机构
[1] Univ Paris Saclay, CEA, LMSF, STMF,Den DM2S, F-91191 Gif Sur Yvette, France
[2] Framatome ANP, Dept Dev Codes & Methodes Tour AREVA, 1 Pl Jean Millier, F-92400 Courbevoie, France
[3] Univ Avignon & Pays Vaucluse, EMMAH, UMR 1114, F-84018 Avignon, France
关键词
Fractional advection-diffusion equation; Lattice Boltzmann method; Multiple-Relaxation-Time; Random walk; Stable process; RANDOM-WALK; DISPERSION; MODELS; CONVECTION; TRANSPORT; CALCULUS;
D O I
10.1016/j.cpc.2018.08.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Partial differential equations (p.d.e) equipped with spatial derivatives of fractional order capture anomalous transport behaviors observed in diverse fields of Science. A number of numerical methods approximate their solutions in dimension one. Focusing our effort on such p.d.e. in higher dimension with Dirichlet boundary conditions, we present an approximation based on Lattice Boltzmann Method with Bhatnagar-Gross-Krook (BGK) or Multiple-Relaxation-Time (MRT) collision operators. First, an equilibrium distribution function is defined for simulating space-fractional diffusion equations in dimensions 2 and 3. Then, we check the accuracy of the solutions by comparing with (i) random walks derived from stable Levy motion, and (ii) exact solutions. Because of its additional freedom degrees, the MRT collision operator provides accurate approximations to space-fractional advection-diffusion equations, even in the cases which the BGK fails to represent because of anisotropic diffusion tensor or of flow rate destabilizing the BGK LBM scheme. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:40 / 54
页数:15
相关论文
共 50 条
  • [1] Lattice Boltzmann method for the fractional advection-diffusion equation
    Zhou, J. G.
    Haygarth, P. M.
    Withers, P. J. A.
    Macleod, C. J. A.
    Falloon, P. D.
    Beven, K. J.
    Ockenden, M. C.
    Forber, K. J.
    Hollaway, M. J.
    Evans, R.
    Collins, A. L.
    Hiscock, K. M.
    Wearing, C.
    Kahana, R.
    Velez, M. L. Villamizar
    PHYSICAL REVIEW E, 2016, 93 (04)
  • [2] An axisymmetric multiple-relaxation-time lattice Boltzmann scheme
    Xie, Wenjun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 : 55 - 66
  • [3] Stability limits of the single relaxation-time advection-diffusion lattice Boltzmann scheme
    Hosseini, Seyed Ali
    Darabiha, Nasser
    Thevenin, Dominique
    Eshghinejadfard, Amir
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2017, 28 (12):
  • [4] Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation
    Yoshida, Hiroaki
    Nagaoka, Makoto
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (20) : 7774 - 7795
  • [5] Multiple-relaxation-time lattice Boltzmann model for the axisymmetric convection diffusion equation
    Li, Like
    Mei, Renwei
    Klausner, James F.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 67 : 338 - 351
  • [6] A modified multiple-relaxation-time lattice Boltzmann model for convection-diffusion equation
    Huang, Rongzong
    Wu, Huiying
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 274 : 50 - 63
  • [7] A multiple-relaxation-time lattice Boltzmann model for Burgers equation
    Yu, Xiaomei
    Zhang, Ling
    Hu, Beibei
    Hu, Ye
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (12) : 13342 - 13351
  • [8] Advection-diffusion lattice Boltzmann scheme for hierarchical grids
    Stiebler, Maik
    Toelke, Jonas
    Krafczyk, Manfred
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (07) : 1576 - 1584
  • [9] A multiple-relaxation-time lattice Boltzmann model for radiative transfer equation
    Liu, Xiaochuan
    Huang, Yong
    Wang, Cun-Hai
    Zhu, Keyong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 429
  • [10] Multiple relaxation time lattice Boltzmann schemes for advection-diffusion equations with application to radar image processing
    Michelet, Jordan
    Tekitek, Mohamed Mahdi
    Berthier, Michel
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 471