Multiple-Relaxation-Time Lattice Boltzmann scheme for fractional advection-diffusion equation

被引:19
作者
Cartalade, Alain [1 ]
Younsi, Amina [1 ,2 ]
Neel, Marie-Christine [3 ]
机构
[1] Univ Paris Saclay, CEA, LMSF, STMF,Den DM2S, F-91191 Gif Sur Yvette, France
[2] Framatome ANP, Dept Dev Codes & Methodes Tour AREVA, 1 Pl Jean Millier, F-92400 Courbevoie, France
[3] Univ Avignon & Pays Vaucluse, EMMAH, UMR 1114, F-84018 Avignon, France
关键词
Fractional advection-diffusion equation; Lattice Boltzmann method; Multiple-Relaxation-Time; Random walk; Stable process; RANDOM-WALK; DISPERSION; MODELS; CONVECTION; TRANSPORT; CALCULUS;
D O I
10.1016/j.cpc.2018.08.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Partial differential equations (p.d.e) equipped with spatial derivatives of fractional order capture anomalous transport behaviors observed in diverse fields of Science. A number of numerical methods approximate their solutions in dimension one. Focusing our effort on such p.d.e. in higher dimension with Dirichlet boundary conditions, we present an approximation based on Lattice Boltzmann Method with Bhatnagar-Gross-Krook (BGK) or Multiple-Relaxation-Time (MRT) collision operators. First, an equilibrium distribution function is defined for simulating space-fractional diffusion equations in dimensions 2 and 3. Then, we check the accuracy of the solutions by comparing with (i) random walks derived from stable Levy motion, and (ii) exact solutions. Because of its additional freedom degrees, the MRT collision operator provides accurate approximations to space-fractional advection-diffusion equations, even in the cases which the BGK fails to represent because of anisotropic diffusion tensor or of flow rate destabilizing the BGK LBM scheme. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:40 / 54
页数:15
相关论文
共 47 条
[1]  
[Anonymous], 2006, INTRO LECT FLUCTUATI
[2]   Space-time fractional Dirichlet problems [J].
Baeumer, Boris ;
Luks, Tomasz ;
Meerschaert, Mark M. .
MATHEMATISCHE NACHRICHTEN, 2018, 291 (17-18) :2516-2535
[3]   Boundary conditions for fractional diffusion [J].
Baeumer, Boris ;
Kovacs, Mihaly ;
Meerschaert, Mark M. ;
Sankaranarayanan, Harish .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 336 :408-424
[4]   REFLECTED SPECTRALLY NEGATIVE STABLE PROCESSES AND THEIR GOVERNING EQUATIONS [J].
Baeumer, Boris ;
Kovacs, Mihaly ;
Meerschaert, Mark M. ;
Schilling, Rene L. ;
Straka, Peter .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (01) :227-248
[5]   The fractional-order governing equation of Levy motion [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1413-1423
[6]   Fractional dispersion, Levy motion, and the MADE tracer tests [J].
Benson, DA ;
Schumer, R ;
Meerschaert, MM ;
Wheatcraft, SW .
TRANSPORT IN POROUS MEDIA, 2001, 42 (1-2) :211-240
[7]   A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS [J].
BHATNAGAR, PL ;
GROSS, EP ;
KROOK, M .
PHYSICAL REVIEW, 1954, 94 (03) :511-525
[8]   Continuous-time random walks on bounded domains [J].
Burch, Nathanial ;
Lehoucq, R. B. .
PHYSICAL REVIEW E, 2011, 83 (01)
[9]   Lattice Boltzmann simulations of 3D crystal growth: Numerical schemes for a phase-field model with anti-trapping current [J].
Cartalade, Alain ;
Younsi, Amina ;
Plapp, Mathis .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (09) :1784-1798
[10]   Space-time fractional diffusion on bounded domains [J].
Chen, Zhen-Qing ;
Meerschaert, Mark M. ;
Nane, Erkan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (02) :479-488