Renormalization of fluctuations for a generalized Harper equation for periodic continued fractions

被引:0
作者
Hulton, S. [1 ]
Mestel, B. D. [1 ]
机构
[1] Open Univ, Dept Math & Stat, Milton Keynes MK7 6AA, Bucks, England
来源
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL | 2015年 / 30卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
05.10.Cc; 75.30.Kz; 64.60.ae; periodic continued fraction; strange set; renormalization; dihedral group; generalized Harper equation; 37N20; 37E20; FORCED 2-LEVEL SYSTEM; STRANGE NONCHAOTIC ATTRACTOR; GOLDEN MEAN RENORMALIZATION; METAL-INSULATOR-TRANSITION; QUADRATIC IRRATIONALS; SCHRODINGER-EQUATION; BARRIER BILLIARD; LOCALIZATION; POTENTIALS; OPERATORS;
D O I
10.1080/14689367.2014.984433
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A renormalization analysis is presented for a generalized Harper equation For values of the parameter omega having periodic continued fraction expansion, we construct the periodic orbits of the renormalization strange sets in function space that govern the fluctuations of the solutions of the generalized Harper equation in the strong-coupling limit lambda -> infinity. In so doing, we give a detailed analysis of the structure of the sets and the renormalization dynamics, including an analysis of the symmetry structure of the renormalization strange sets in terms of D-3, the dihedral group of order 6.
引用
收藏
页码:85 / 121
页数:37
相关论文
共 39 条
  • [1] Renormalisation of correlations in a barrier billiard: Quadratic irrational trajectories
    Adamson, L. N. C.
    Osbaldestin, A. H.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2014, 270 : 30 - 45
  • [2] Aubry S., 1980, Annals of the Israel Physical Society, V3, P133
  • [3] The Ten Martini Problem
    Avila, Artur
    Jitomirskaya, Svetlana
    [J]. ANNALS OF MATHEMATICS, 2009, 170 (01) : 303 - 342
  • [4] QUASIPERIODICALLY FORCED DAMPED PENDULA AND SCHRODINGER-EQUATIONS WITH QUASIPERIODIC POTENTIALS - IMPLICATIONS OF THEIR EQUIVALENCE
    BONDESON, A
    OTT, E
    ANTONSEN, TM
    [J]. PHYSICAL REVIEW LETTERS, 1985, 55 (20) : 2103 - 2106
  • [5] Self-similar correlations in a barrier billiard
    Chapman, JR
    Osbaldestin, AH
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2003, 180 (1-2) : 71 - 91
  • [6] MAGNETIC SUBBAND STRUCTURE OF ELECTRONS IN HEXAGONAL LATTICES
    CLARO, FH
    WANNIER, GH
    [J]. PHYSICAL REVIEW B, 1979, 19 (12): : 6068 - 6074
  • [7] Renormalization for the Harper equation for quadratic irrationals
    Dalton, J
    Mestel, BD
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (10) : 4776 - 4783
  • [8] WAVE-FUNCTION AND RESISTANCE SCALING FOR QUADRATIC IRRATIONALS IN HARPERS EQUATION
    DOMINGUEZ, D
    WIECKO, C
    JOSE, JV
    [J]. PHYSICAL REVIEW B, 1992, 45 (24) : 13919 - 13929
  • [9] CORRELATION-PROPERTIES OF A QUASI-PERIODICALLY FORCED 2-LEVEL SYSTEM
    FEUDEL, U
    PIKOVSKY, AS
    ZAKS, MA
    [J]. PHYSICAL REVIEW E, 1995, 51 (03): : 1762 - 1769
  • [10] Renormalization of correlations and spectra of a strange non-chaotic attractor
    Feudel, U
    Pikovsky, A
    Politi, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (17): : 5297 - 5311