A new fast-multipole accelerated Poisson solver in two dimensions

被引:72
作者
Ethridge, F
Greengard, L
机构
[1] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
fast multipole method; Poisson equation; adaptive refinement; fast Poisson solver;
D O I
10.1137/S1064827500369967
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an adaptive fast multipole method for solving the Poisson equation in two dimensions. The algorithm is direct, assumes that the source distribution is discretized using an adaptive quad-tree, and allows for Dirichlet, Neumann, periodic, and free-space conditions to be imposed on the boundary of a square. The amount of work per grid point is comparable to that of classical fast solvers, even for highly nonuniform grids.
引用
收藏
页码:741 / 760
页数:20
相关论文
共 31 条
[1]  
ALMGREN AS, 1993, P 11 AIAA COMP FLUID, P530
[2]  
ANDERSON CR, 1988, P 2 INT S DOM DEC ME, P129
[3]  
[Anonymous], 1989, DOMAIN DECOMPOSITION
[4]  
[Anonymous], 1968, BOUNDARY VALUE PROBL
[5]   ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
BERGER, MJ ;
OLIGER, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 53 (03) :484-512
[6]   A RENORMALIZATION METHOD FOR THE EVALUATION OF LATTICE SUMS [J].
BERMAN, CL ;
GREENGARD, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (11) :6036-6048
[7]  
BRANDT A, 1977, MATH COMPUT, V31, P333, DOI 10.1090/S0025-5718-1977-0431719-X
[8]   DIRECT METHODS FOR SOLVING POISSONS EQUATIONS [J].
BUZBEE, BL ;
GOLUB, GH ;
NIELSON, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (04) :627-&
[9]  
Canuto C., 2012, Spectral Methods: Fundamentals in Single Domains
[10]   A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS [J].
CARRIER, J ;
GREENGARD, L ;
ROKHLIN, V .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (04) :669-686