Electronic scattering leads to anomalous thermal conductivity of n-type cubic silicon carbide in the high-temperature region

被引:11
作者
Fang, Xiao-Yong [1 ]
Wang, Kun [1 ]
Hou, Zhi-Ling [2 ,3 ]
Jin, Hai-Bo [2 ]
Li, Ya-Qin [1 ]
Cao, Mao-Sheng [2 ]
机构
[1] Yanshan Univ, Sch Sci, Qinhuangdao 066004, Peoples R China
[2] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[3] Beijing Univ Chem Technol, Sch Sci, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
SEMICONDUCTOR; DEVICES;
D O I
10.1088/0953-8984/24/44/445802
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
This study simulates thermal conductivity via a carrier scattering mechanism and the related parameters are obtained based on first principles for intrinsic and doped silicon carbide (SiC) over a temperature range of 300-1450 K. The theoretical analysis results show that the thermal conductivity decreases with increasing temperature along each orientation for both cubic SiC (3C-SiC) and doped SiC. Compared with traditional calculations, the thermal conductivity of doped SiC is larger than that of intrinsic SiC in the high-temperature region. In particular, the n-type thermal conductivity is higher than the p-type thermal conductivity because of the scattering probability between electrons and the ionization impurity increasing with the temperature. Our studies are important to a further understanding of thermal transportation.
引用
收藏
页数:8
相关论文
共 21 条
[1]   Thermal conductivity of germanium crystals with different isotopic compositions [J].
AsenPalmer, M ;
Bartkowski, K ;
Gmelin, E ;
Cardona, M ;
Zhernov, AP ;
Inyushkin, AV ;
Taldenkov, A ;
Ozhogin, VI ;
Itoh, KM ;
Haller, EE .
PHYSICAL REVIEW B, 1997, 56 (15) :9431-9447
[2]   MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES [J].
CALLAWAY, J .
PHYSICAL REVIEW, 1959, 113 (04) :1046-1051
[3]   Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review [J].
Casady, JB ;
Johnson, RW .
SOLID-STATE ELECTRONICS, 1996, 39 (10) :1409-1422
[4]   Molecular dynamics modeling of the thermal conductivity of irradiated SiC as a function of cascade overlap [J].
Crocombette, Jean-Paul ;
Dumazer, Guillaume ;
Hoang, Nguyen Quoc ;
Gao, Fei ;
Weber, William J. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (02)
[5]   Silicon Carbide as a Platform for Power Electronics [J].
Eddy, C. R., Jr. ;
Gaskill, D. K. .
SCIENCE, 2009, 324 (5933) :1398-1400
[6]  
Harris G. L, 1995, Properties of silicon carbide
[7]   ANALYSIS OF LATTICE THERMAL CONDUCTIVITY [J].
HOLLAND, MG .
PHYSICAL REVIEW, 1963, 132 (06) :2461-&
[8]   Analysis of the temperature dependent thermal conductivity of silicon carbide for high temperature applications [J].
Joshi, RP ;
Neudeck, PG ;
Fazi, C .
JOURNAL OF APPLIED PHYSICS, 2000, 88 (01) :265-269
[9]   Thermal conductivity of GaN [J].
Kamatagi, M. D. ;
Sankeshwar, N. S. ;
Mulimani, B. G. .
DIAMOND AND RELATED MATERIALS, 2007, 16 (01) :98-106
[10]   Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride [J].
Lindsay, L. ;
Broido, D. A. .
PHYSICAL REVIEW B, 2011, 84 (15)