Electronic scattering leads to anomalous thermal conductivity of n-type cubic silicon carbide in the high-temperature region

被引:11
作者
Fang, Xiao-Yong [1 ]
Wang, Kun [1 ]
Hou, Zhi-Ling [2 ,3 ]
Jin, Hai-Bo [2 ]
Li, Ya-Qin [1 ]
Cao, Mao-Sheng [2 ]
机构
[1] Yanshan Univ, Sch Sci, Qinhuangdao 066004, Peoples R China
[2] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[3] Beijing Univ Chem Technol, Sch Sci, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
SEMICONDUCTOR; DEVICES;
D O I
10.1088/0953-8984/24/44/445802
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
This study simulates thermal conductivity via a carrier scattering mechanism and the related parameters are obtained based on first principles for intrinsic and doped silicon carbide (SiC) over a temperature range of 300-1450 K. The theoretical analysis results show that the thermal conductivity decreases with increasing temperature along each orientation for both cubic SiC (3C-SiC) and doped SiC. Compared with traditional calculations, the thermal conductivity of doped SiC is larger than that of intrinsic SiC in the high-temperature region. In particular, the n-type thermal conductivity is higher than the p-type thermal conductivity because of the scattering probability between electrons and the ionization impurity increasing with the temperature. Our studies are important to a further understanding of thermal transportation.
引用
收藏
页数:8
相关论文
共 21 条
  • [1] Thermal conductivity of germanium crystals with different isotopic compositions
    AsenPalmer, M
    Bartkowski, K
    Gmelin, E
    Cardona, M
    Zhernov, AP
    Inyushkin, AV
    Taldenkov, A
    Ozhogin, VI
    Itoh, KM
    Haller, EE
    [J]. PHYSICAL REVIEW B, 1997, 56 (15) : 9431 - 9447
  • [2] MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES
    CALLAWAY, J
    [J]. PHYSICAL REVIEW, 1959, 113 (04): : 1046 - 1051
  • [3] Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review
    Casady, JB
    Johnson, RW
    [J]. SOLID-STATE ELECTRONICS, 1996, 39 (10) : 1409 - 1422
  • [4] Molecular dynamics modeling of the thermal conductivity of irradiated SiC as a function of cascade overlap
    Crocombette, Jean-Paul
    Dumazer, Guillaume
    Hoang, Nguyen Quoc
    Gao, Fei
    Weber, William J.
    [J]. JOURNAL OF APPLIED PHYSICS, 2007, 101 (02)
  • [5] Silicon Carbide as a Platform for Power Electronics
    Eddy, C. R., Jr.
    Gaskill, D. K.
    [J]. SCIENCE, 2009, 324 (5933) : 1398 - 1400
  • [6] Harris G. L, 1995, Properties of silicon carbide
  • [7] ANALYSIS OF LATTICE THERMAL CONDUCTIVITY
    HOLLAND, MG
    [J]. PHYSICAL REVIEW, 1963, 132 (06): : 2461 - &
  • [8] Analysis of the temperature dependent thermal conductivity of silicon carbide for high temperature applications
    Joshi, RP
    Neudeck, PG
    Fazi, C
    [J]. JOURNAL OF APPLIED PHYSICS, 2000, 88 (01) : 265 - 269
  • [9] Thermal conductivity of GaN
    Kamatagi, M. D.
    Sankeshwar, N. S.
    Mulimani, B. G.
    [J]. DIAMOND AND RELATED MATERIALS, 2007, 16 (01) : 98 - 106
  • [10] Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride
    Lindsay, L.
    Broido, D. A.
    [J]. PHYSICAL REVIEW B, 2011, 84 (15)