Goodness-of-fit tests in parametric regression based on the estimation of the error distribution
被引:54
作者:
论文数: 引用数:
h-index:
机构:
Van Keilegom, Ingrid
[2
]
Manteiga, Wenceslao Gonzalez
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Fac Matemat, Dept Estadist, Santiago De Compostela 15706, SpainUniv Santiago de Compostela, Fac Matemat, Dept Estadist, Santiago De Compostela 15706, Spain
Manteiga, Wenceslao Gonzalez
[1
]
Sellero, Cesar Sanchez
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Fac Matemat, Dept Estadist, Santiago De Compostela 15706, SpainUniv Santiago de Compostela, Fac Matemat, Dept Estadist, Santiago De Compostela 15706, Spain
Sellero, Cesar Sanchez
[1
]
机构:
[1] Univ Santiago de Compostela, Fac Matemat, Dept Estadist, Santiago De Compostela 15706, Spain
Consider a heteroscedastic regression model Y = m(X) + s(X) e, where m(X) = E(Y vertical bar X) and sigma(2)(X) = Var(Y vertical bar X) are unknown, and the error e is independent of the covariate X. We propose a new type of test statistic for testing whether the regression curve m(.) belongs to some parametric family of regression functions. The proposed test statistic measures the distance between the empirical distribution function of the parametric and of the nonparametric residuals. The asymptotic theory of the proposed test is developed, and the proposed testing procedure is illustrated by means of a small simulation study and the analysis of a data set.