Poincar,-Sobolev equations in the hyperbolic space

被引:40
作者
Bhakta, Mousomi [1 ]
Sandeep, K. [1 ]
机构
[1] TIFR Ctr Applicable Math, Bangalore 560065, Karnataka, India
关键词
ELLIPTIC-EQUATIONS; SYMMETRY; EXISTENCE; EXPONENTS;
D O I
10.1007/s00526-011-0433-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the a priori estimates, existence/nonexistence of radial sign changing solution, and the Palais- Smale characterisation of the problem-Delta(BN)u-lambda u = |u|(p-1)u, u is an element of H1(B-N) in the hyperbolic space B-N where 1 < p <= N+ 2/N-2. We will also prove the existence of sign changing solution to the Hardy- Sobolev- Mazya equation and the critical Grushin problem.
引用
收藏
页码:247 / 269
页数:23
相关论文
共 16 条
[1]   On a version of Trudinger-Moser inequality with Mobius shift invariance [J].
Adimurthi ;
Tintarev, Kyril .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 39 (1-2) :203-212
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
[Anonymous], 1994, Graduate Texts in Mathematics
[4]   On the Grushin operator and hyperbolic symmetry [J].
Beckner, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (04) :1233-1246
[5]   Hardy-Sobolev-Maz'ya type equations in bounded domains [J].
Bhakta, M. ;
Sandeep, K. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (01) :119-139
[6]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[7]  
Castorina D, 2008, REND LINCEI-MAT APPL, V19, P189
[8]   Hardy-Sobolev extremals, hyperbolic symmetry and scalar curvature equations [J].
Castorina, D. ;
Fabbri, I. ;
Mancini, G. ;
Sandeep, K. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (03) :1187-1206
[9]   SOME EXISTENCE RESULTS FOR SUPERLINEAR ELLIPTIC BOUNDARY-VALUE-PROBLEMS INVOLVING CRITICAL EXPONENTS [J].
CERAMI, G ;
SOLIMINI, S ;
STRUWE, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 69 (03) :289-306
[10]   MOSER-TRUDINGER INEQUALITY ON CONFORMAL DISCS [J].
Mancini, G. ;
Sandeep, K. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2010, 12 (06) :1055-1068