Deep neural network-based wind speed forecasting and fatigue analysis of a large composite wind turbine blade

被引:30
|
作者
Kulkarni, Pravin A. [1 ]
Dhoble, Ashwinkumar S. [1 ]
Padole, Pramod M. [1 ]
机构
[1] Visvesvaraya Natl Inst Technol, Dept Mech Engn, Nagpur 440010, Maharashtra, India
关键词
Deep learning; artificial neural network; machine learning; long short-term memory; nonlinear autoregressive network with external inputs; wind speed forecasting; composite wind turbine blade; fatigue; cohesive zone modeling; NREL; TensorFlow; FINITE-ELEMENT-ANALYSIS; AERODYNAMIC LOADS; DELAMINATION; PREDICTION; MODEL; IMPACT; SIMULATION; VIBRATION; WAVELET; ENERGY;
D O I
10.1177/0954406218797972
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The purpose of this paper is to analyze the modern deep neural networks such as nonlinear autoregressive network with external inputs and a recurrent neural network called long short-term memory for wind speed forecast for long-term and use the prediction for fatigue analysis of a large 5 MW wind turbine blade made of composite materials. The use of machine learning algorithms of advanced neural network applied for engineering problems is increasing recently. The present paper therefore brings as important connection between these latest machine learning methods and engineering analysis of complex wind turbine blades which are also the focus of researchers in renewable system design and analysis. First, a nonlinear autoregressive network with external inputs neural network model using Levenberg-Marquardt back propagation feed forward algorithm is developed with 5 years of environment parameters as input. Similarly, a long short-term memory based model is developed and compared. The chosen long short-term memory model is used for developing two-year wind speed forecast. This wind pattern is used to create time varying loads on blade sections and cross-verified with National Renewable Energy Laboratory tools. A high-fidelity CAD model of the NREL 5 MW blade is developed and the fatigue analysis of the blade is carried out using the stress life approach with load ratio based on cohesive zone modeling. The blade is found to have available life of about 23.6 years. Thus, an integrated methodology is developed involving high-fidelity modeling of the composite material blade, wind speed forecasting using multiple environmental parameters using latest deep learning methods for machine learning, dynamic wind load calculation, and fatigue analysis for National Renewable Energy Laboratory blade.
引用
收藏
页码:2794 / 2812
页数:19
相关论文
共 50 条
  • [21] Probabilistic deep neural network price forecasting based on residential load and wind speed predictions
    Afrasiabi, Mousa
    Mohammadi, Mohammad
    Rastegar, Mohammad
    Kargarian, Amin
    IET RENEWABLE POWER GENERATION, 2019, 13 (11) : 1840 - 1848
  • [22] Wind Speed Forecasting in Fishing Harbor Anchorage Using a Novel Deep Convolutional Neural Network
    He, Caifen
    Chen, Qiaote
    Fang, Xuyuan
    Zhou, Yangzhang
    Fu, Randi
    Jin, Wei
    FRONTIERS IN EARTH SCIENCE, 2021, 9
  • [23] Artificial Neural Network Based Wind Speed & Power Forecasting in US Wind Energy Farms
    Varanasi, Jyothi
    Tripathi, M. M.
    PROCEEDINGS OF THE FIRST IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, INTELLIGENT CONTROL AND ENERGY SYSTEMS (ICPEICES 2016), 2016,
  • [24] Study on wind speed forecasting based on STC and BP neural network
    Liu, Xingjie
    Zheng, Wenshu
    Cen, Tianyun
    APPLIED ENERGY TECHNOLOGY, PTS 1 AND 2, 2013, 724-725 : 623 - 629
  • [25] Graph Neural Network-Based Wind Farm Cluster Speed Prediction
    Chen, Ruifeng
    Liu, Jiaming
    Wang, Fei
    Ren, Hui
    Zhen, Zhao
    2020 IEEE STUDENT CONFERENCE ON ELECTRIC MACHINES AND SYSTEMS (SCEMS 2020), 2020, : 982 - 987
  • [26] A NEURAL NETWORK-BASED WIND FORECASTING MODEL FOR WIND POWER MANAGEMENT IN NORTHEASTERN THAILAND
    Surussavadee, Chinnawat
    Wu, Wanchen
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 3957 - 3960
  • [27] Optimized Hybrid Neural Network for Wind Speed Forecasting
    Bashar, T. M. Rubaith
    Munem, Mohammad
    Islam, Md Safayet
    Hossain, Murad
    Shawkat, Tasnim Binte
    Rahaman, Habibur
    2022 IEEE ELECTRICAL POWER AND ENERGY CONFERENCE (EPEC), 2022, : 284 - 289
  • [28] A Novel Hybrid Neural Network-Based Day-Ahead Wind Speed Forecasting Technique
    Abbasipour, Mehdi
    Igder, Mosayeb Afshari
    Liang, Xiaodong
    IEEE ACCESS, 2021, 9 : 151142 - 151154
  • [29] Structural analysis of an offshore vertical axis wind turbine composite blade experiencing an extreme wind load
    Hand, Brian
    Kelly, Ger
    Cashman, Andrew
    MARINE STRUCTURES, 2021, 75
  • [30] A review of wind speed and wind power forecasting with deep neural networks
    Wang, Yun
    Zou, Runmin
    Liu, Fang
    Zhang, Lingjun
    Liu, Qianyi
    APPLIED ENERGY, 2021, 304