Interior regularity for solutions to some degenerate quasilinear obstacle problems

被引:3
作者
Gianazza, U
Marchi, S
机构
[1] Univ Parma, Dipartimento Matemat, I-43100 Parma, Italy
[2] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
关键词
quasilinear degenerate elliptic equations; obstacle problem; Hormander vector fields; Liener criterion;
D O I
10.1016/S0362-546X(97)00702-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The interior regularity of solutions to an obstacle problem relative to a quasilinear degenerate elliptic operator is discussed. In the usual framework of classical elliptic operators this is a well-known problem, extensively studied. In the study the first-order derivatives are substituted with Hormander vector fields and then the regularity results are extended due to this new setting.
引用
收藏
页码:923 / 942
页数:20
相关论文
共 32 条
[1]  
[Anonymous], DIRICHLET FORMS MARK
[2]  
[Anonymous], JAHRESBER DTSCH MATH
[3]   SOBOLEV INEQUALITIES ON HOMOGENEOUS SPACES [J].
BIROLI, M ;
MOSCO, U .
POTENTIAL ANALYSIS, 1995, 4 (04) :311-324
[4]  
BIROLI M, 1993, BOUNDARY VALUE PROBL, P305
[5]  
BIROLI M, IN PRESS ANN MAT PUR
[6]  
BIROLI M, 1993, NECESSITY WIENER TES
[7]  
DALMASO G, 1984, CALCOLO DEILE VARIAZ
[8]  
DIBENEDETTO E, 1984, ANN I H POINCARE-AN, V1, P295
[9]   FUNDAMENTAL-SOLUTIONS FOR 2ND-ORDER SUBELLIPTIC OPERATORS [J].
FEFFERMAN, CL ;
SANCHEZCALLE, A .
ANNALS OF MATHEMATICS, 1986, 124 (02) :247-272
[10]  
FRANCHI B, 1994, IN PRESS CRAS