High efficiency quasi 2D lead bromide perovskite solar cells using various barrier molecules

被引:102
作者
Cohen, Bat-El [1 ]
Wierzbowska, Malgorzata [2 ]
Etgar, Lioz [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Chem, Casali Ctr Appl Chem, Jerusalem, Israel
[2] Polish Acad Sci, Intitute High Pressure Phys, Ul Sokolowska 29-37, PL-01142 Warsaw, Poland
关键词
EXCITON BINDING-ENERGY; HALIDE PEROVSKITES; THIN-FILMS; LENGTHS; SEMICONDUCTORS; CH3NH3PBI3; FORMAMIDINIUM; ABSORPTION; TRANSPORT; ABSORBER;
D O I
10.1039/c7se00311k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work reports on the high power conversion efficiency (PCE) and high open circuit voltage (V-oc) of bromide-based quasi 2D perovskite solar cells. A V-oc of more than 1.4 V and, at the same time, a PCE of 9.5% for cells with hole transport material (HTM) were displayed, whereas a V-oc value of 1.37 V and a PCE of 7.9% were achieved for HTM-free cells. Bromide quasi 2D perovskites were synthesized using various long organic barriers (e.g., benzyl ammonium, BA; phenylethyl ammonium, PEA; and propyl phenyl ammonium, PPA). The influence of different barrier molecules on the quasi 2D perovskite's properties was studied using absorbance, X-ray diffraction, and scanning electron microscopy. No change was observed in the exciton binding energy as a result of changing the barrier molecule. Density functional theory (DFT) with spin-orbit coupling calculations showed that in the case of BA, holes are delocalized over the whole molecule, whereas for PEA and PPA, they are delocalized more at the phenyl ring. This factor influences the electrical conductivity of holes, which is highest for BA in comparison with the other barriers. In the case of electrons, the energy onset for the nonzero conductivity is lowest for BA. Both calculations support the better PV performance observed for the quasi 2D perovskite based on BA as the barrier. Finally, using contact angle measurements, it was shown that the quasi 2D perovskite is more hydrophobic than the 3D perovskite. Stability measurements showed that cells based on the quasi 2D perovskite are more stable than cells based on the 3D perovskite.
引用
收藏
页码:1935 / 1943
页数:9
相关论文
共 35 条
[1]   High Open-Circuit Voltage: Fabrication of Formamidinium Lead Bromide Perovskite Solar Cells Using Fluorene-Dithiophene Derivatives as Hole-Transporting Materials [J].
Arora, Neha ;
Orlandi, Simonetta ;
Dar, M. Ibrahim ;
Aghazada, Sadig ;
Jacopin, Gwenole ;
Cavazzini, Marco ;
Mosconi, Edoardo ;
Gratia, Paul ;
De Angelis, Filippo ;
Pozzi, Gianluca ;
Graetzel, Michael ;
Nazeeruddin, Mohammad Khaja .
ACS ENERGY LETTERS, 2016, 1 (01) :107-112
[2]   High performance hybrid solar cells sensitized by organolead halide perovskites [J].
Cai, Bing ;
Xing, Yedi ;
Yang, Zhou ;
Zhang, Wen-Hua ;
Qiu, Jieshan .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (05) :1480-1485
[3]   PREPARATION AND CHARACTERIZATION OF LAYERED LEAD HALIDE COMPOUNDS [J].
CALABRESE, J ;
JONES, NL ;
HARLOW, RL ;
HERRON, N ;
THORN, DL ;
WANG, Y .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1991, 113 (06) :2328-2330
[4]   2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications [J].
Cao, Duyen H. ;
Stoumpos, Constantinos C. ;
Farha, Omar K. ;
Hupp, Joseph T. ;
Kanatzidis, Mercouri G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (24) :7843-7850
[5]  
Cohen B. E., 2017, ADV FUNCT MATER
[6]   Impact of Antisolvent Treatment on Carrier Density in Efficient Hole-Conductor-Free Perovskite-Based Solar Cells [J].
Cohen, Bat-El ;
Aharon, Sigalit ;
Dymshits, Alex ;
Etgar, Lioz .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (01) :142-147
[7]   Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals [J].
Dong, Qingfeng ;
Fang, Yanjun ;
Shao, Yuchuan ;
Mulligan, Padhraic ;
Qiu, Jie ;
Cao, Lei ;
Huang, Jinsong .
SCIENCE, 2015, 347 (6225) :967-970
[8]   High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite [J].
Edri, Eran ;
Kirmayer, Saar ;
Cahen, David ;
Hodes, Gary .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (06) :897-902
[9]   INTENSITY OF OPTICAL ABSORPTION BY EXCITONS [J].
ELLIOTT, RJ .
PHYSICAL REVIEW, 1957, 108 (06) :1384-1389
[10]   Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells [J].
Etgar, Lioz ;
Gao, Peng ;
Xue, Zhaosheng ;
Peng, Qin ;
Chandiran, Aravind Kumar ;
Liu, Bin ;
Nazeeruddin, Md. K. ;
Graetzel, Michael .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (42) :17396-17399