Symmetry properties of conservation laws

被引:25
作者
Anco, Stephen C. [1 ]
机构
[1] Brock Univ, Dept Math & Stat, St Catharines, ON L2S 3A1, Canada
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2016年 / 30卷 / 28-29期
基金
加拿大自然科学与工程研究理事会;
关键词
Symmetries; conservation laws; conservation law theorem; PARTIAL-DIFFERENTIAL EQUATIONS; DIRECT CONSTRUCTION METHOD;
D O I
10.1142/S0217979216400038
中图分类号
O59 [应用物理学];
学科分类号
摘要
Symmetry properties of conservation laws of partial differential equations are developed by using the general method of conservation law multipliers. As main results, simple conditions are given for characterizing when a conservation law and its associated conserved quantity are invariant (and, more generally, homogeneous) under the action of a symmetry. These results are used to show that a recent conservation law formula (due to Ibragimov) is equivalent to a standard formula for the action of an infinitesimal symmetry on a conservation law multiplier.
引用
收藏
页数:14
相关论文
共 21 条
[1]  
Anco S. C., ARXIVMATHPH160508734
[2]  
Anco S. C., 2015, ARXIVMATHPH151009154
[3]   Conservation laws of scaling-invariant field equations [J].
Anco, SC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (32) :8623-8638
[4]   Derivation of conservation laws from nonlocal symmetries of differential equations [J].
Anco, SC ;
Bluman, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (05) :2361-2375
[5]   Direct construction method for conservation laws of partial differential equations - Part I: Examples of conservation law classifications [J].
Anco, SC ;
Bluman, G .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2002, 13 :545-566
[6]   Direct construction method for conservation laws of partial differential equations - Part II: General treatment [J].
Anco, SC ;
Bluman, G .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2002, 13 :567-585
[7]   Direct construction of conservation laws from field equations [J].
Anco, SC ;
Bluman, G .
PHYSICAL REVIEW LETTERS, 1997, 78 (15) :2869-2873
[8]  
[Anonymous], 2010, ARCH ALGA
[9]  
Bluman G., 2002, SPRINGER APPL MATH S, V154
[10]  
Bluman G., 2008, P 4 INT WORKSH GROUP, P13