Identifying dual functions of rGO in a BiVO4/rGO/NiFe-layered double hydroxide photoanode for efficient photoelectrochemical water splitting

被引:74
作者
Chen, Hua [1 ,2 ]
Wang, Songcan [2 ,3 ]
Wu, Jianzhong [1 ]
Zhang, Xiacong [4 ]
Zhang, Jia [1 ]
Lyu, Miaoqiang [2 ]
Luo, Bin [2 ]
Qian, Guangren [1 ]
Wang, Lianzhou [2 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, 333 Nanchen Rd, Shanghai 200444, Peoples R China
[2] Univ Queensland, Sch Chem Engn, Nanomat Ctr, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia
[3] Northwestern Polytech Univ, Frontiers Sci Ctr Flexible Elect FSCFE, Shaanxi Inst Flexible Elect SIFE, Shaanxi Inst Biomed Mat & Engn SIBME, 127 West Youyi Rd, Xian 710072, Peoples R China
[4] Shanghai Univ, Dept Polymer Mat, Coll Mat Sci & Engn, 333 Nanchen Rd, Shanghai 200444, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
LAYERED DOUBLE-HYDROXIDE; BIVO4; PHOTOANODE; CHARGE SEPARATION; OXIDATION EFFICIENCY; REACTION-KINETICS; NANOROD ARRAYS; LIGHT-DRIVEN; HETEROJUNCTION; FABRICATION; NANOPARTICLES;
D O I
10.1039/d0ta04572a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Bismuth vanadate (BiVO4) is a promising material for photoelectrochemical (PEC) water oxidation. However, the sluggish water oxidation kinetics, poor electron transport properties and severe charge recombination limit its performance. Here, a new type of triadic photoanode is developed by rationally designing the electrode structure. The NiFe-layered double hydroxide (NiFe-LDH) serves as a water oxidation catalyst (WOC) to accelerate the transportation of the photo-generated holes from the BiVO(4)photoelectrode to the electrolyte for improving the water oxidation reaction, while the reduced graphene oxide (rGO) nanosheets serve as an efficient electron shuttling mediator for suppressing the electron-hole recombination at the BiVO4/NiFe-LDH interfaces. On the other hand, rGO can positively shift the electrodeposion potential of NiFe-LDH (-0.1 Vvs.RHE) which can greatly protect the BiVO(4)electrode, since a more negative potential would reduce its PEC activity. This electrode exhibits a significantly higher photocurrent density than those of its pristine BiVO4, BiVO4/rGO, and BiVO4/NiFe-LDH counterparts, producing a photocurrent density of 3.26 mA cm(-2)at 1.23 Vvs.RHE under AM 1.5 G illumination and showing excellent stability. The improved PEC performance is attributed to the accelerated charge separation/transfer between the photoanode/electrolyte interfaces and surface water oxidation reaction due to the synergistic effect of rGO and NiFe-LDH.
引用
收藏
页码:13231 / 13240
页数:10
相关论文
共 64 条
[1]   Demonstration of a 50 cm2 BiVO4 tandem photoelectrochemical-photovoltaic water splitting device [J].
Ahmet, Ibbi Y. ;
Ma, Yimeng ;
Jang, Ji-Wook ;
Henschel, Tobias ;
Stannowski, Bernd ;
Lopes, Tania ;
Vilanova, Antonio ;
Mendes, Adelio ;
Abdi, Fatwa F. ;
van de Krol, Roel .
SUSTAINABLE ENERGY & FUELS, 2019, 3 (09) :2366-2379
[2]   Photoanode of LDH catalyst decorated semiconductor heterojunction of BiVO4/CdS to enhance PEC water splitting efficiency [J].
Bai, Shouli ;
Li, Qiangqiang ;
Han, Jingyi ;
Yang, Xiaojun ;
Shu, Xin ;
Sun, Jianhua ;
Sun, Lixia ;
Luo, Ruixian ;
Li, Dianqing ;
Chen, Aifan .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (45) :24642-24652
[3]   Fabricating of Fe2O3/BiVO4 heterojunction based photoanode modified with NiFe-LDH nanosheets for efficient solar water splitting [J].
Bai, Shouli ;
Chu, Haomiao ;
Xiang, Xu ;
Luo, Ruixian ;
He, Jing ;
Chen, Aifan .
CHEMICAL ENGINEERING JOURNAL, 2018, 350 :148-156
[4]   Enhanced Surface Reaction Kinetics and Charge Separation of p-n Heterojunction Co3O4/BiVO4 Photoanodes [J].
Chang, Xiaoxia ;
Wang, Tuo ;
Zhang, Peng ;
Zhang, Jijie ;
Li, Ang ;
Gong, Jinlong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (26) :8356-8359
[5]   Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods [J].
Chun, WJ ;
Ishikawa, A ;
Fujisawa, H ;
Takata, T ;
Kondo, JN ;
Hara, M ;
Kawai, M ;
Matsumoto, Y ;
Domen, K .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (08) :1798-1803
[6]   Photoelectrocatalytic Water Splitting: Significance of Cocatalysts, Electrolyte, and Interfaces [J].
Ding, Chunmei ;
Shi, Jingying ;
Wang, Zhiliang ;
Li, Can .
ACS CATALYSIS, 2017, 7 (01) :675-688
[7]   Layered double hydroxide modified WO3 nanorod arrays for enhanced photoelectrochemical water splitting [J].
Fan, Xiaoli ;
Gao, Bin ;
Wang, Tao ;
Huang, Xianli ;
Gong, Hao ;
Xue, Hairong ;
Guo, Hu ;
Song, Li ;
Xia, Wei ;
He, Jianping .
APPLIED CATALYSIS A-GENERAL, 2016, 528 :52-58
[8]   Enhanced water oxidation reaction kinetics on a BiVO4 photoanode by surface modification with Ni4O4 cubane [J].
Gao, Bin ;
Wang, Tao ;
Fan, Xiaoli ;
Gong, Hao ;
Li, Peng ;
Feng, Yaya ;
Huang, Xianli ;
He, Jianping ;
Ye, Jinhua .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (01) :278-288
[9]   An Advanced Ni-Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation [J].
Gong, Ming ;
Li, Yanguang ;
Wang, Hailiang ;
Liang, Yongye ;
Wu, Justin Z. ;
Zhou, Jigang ;
Wang, Jian ;
Regier, Tom ;
Wei, Fei ;
Dai, Hongjie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (23) :8452-8455
[10]   Methods for Electrochemical Synthesis and Photoelectrochemical Characterization for Photoelectrodes [J].
Govindaraju, Gokul V. ;
Wheeler, Garrett P. ;
Lee, Dongho ;
Choi, Kyoung-Shin .
CHEMISTRY OF MATERIALS, 2017, 29 (01) :355-370