The symplectic ideal and a double centraliser theorem

被引:8
作者
Tange, Rudolf [1 ]
机构
[1] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2008年 / 77卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1112/jlms/jdm108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We interpret a result of Oehms as a statement about the symplectic ideal. We use this result to prove a double centraliser theorem for the symplectic group acting on circle plus(s)(r=0) circle times(r)V, where V is the natural module for the symplectic group. This result was obtained in characteristic zero by Weyl. Furthermore, we use this to extend to arbitrary connected reductive groups G with simply connected derived group the earlier result of the author that the algebra K[G](g) of infinitesimal invariants in the algebra of regular functions on G is a unique factorisation domain.
引用
收藏
页码:687 / 699
页数:13
相关论文
共 20 条
[11]  
Green J. A., 1980, LECT NOTES MATH, V830
[12]   ON THE DECOMPOSITION OF BRAUER CENTRALIZER ALGEBRAS [J].
HANLON, P ;
WALES, D .
JOURNAL OF ALGEBRA, 1989, 121 (02) :409-445
[13]  
Jantzen J. C., 1987, PURE APPL MATH, V131
[14]  
King R.C., 1976, LECTURE NOTES PHYSIC, V150, P490
[15]  
MORTON HR, 1989, BASIS BIRMAN WENZL A
[16]   Centralizer coalgebras, FRT-construction, and symplectic monoids [J].
Oehms, S .
JOURNAL OF ALGEBRA, 2001, 244 (01) :19-44
[17]  
TANGE RH, CANAD J MAT IN PRESS
[18]   ON THE STRUCTURE OF BRAUER CENTRALIZER ALGEBRAS [J].
WENZL, H .
ANNALS OF MATHEMATICS, 1988, 128 (01) :173-193
[19]  
Weyl H., 1946, The Classical Groups, V2nd ed.
[20]  
[No title captured]