The symplectic ideal and a double centraliser theorem

被引:8
作者
Tange, Rudolf [1 ]
机构
[1] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2008年 / 77卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1112/jlms/jdm108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We interpret a result of Oehms as a statement about the symplectic ideal. We use this result to prove a double centraliser theorem for the symplectic group acting on circle plus(s)(r=0) circle times(r)V, where V is the natural module for the symplectic group. This result was obtained in characteristic zero by Weyl. Furthermore, we use this to extend to arbitrary connected reductive groups G with simply connected derived group the earlier result of the author that the algebra K[G](g) of infinitesimal invariants in the algebra of regular functions on G is a unique factorisation domain.
引用
收藏
页码:687 / 699
页数:13
相关论文
共 20 条
[1]  
BERELE A, 1986, LINEAR MULTILINEAR A, V19, P299, DOI DOI 10.1080/03081088608817725
[2]  
Bourbaki Nicolas, 1989, Elements of Mathematics (Berlin)
[3]   On algebras which are connected with the semisimple continuous groups [J].
Brauer, R .
ANNALS OF MATHEMATICS, 1937, 38 :857-872
[4]   THE SEMISIMPLICITY OF OMEGA-FN [J].
BROWN, WP .
ANNALS OF MATHEMATICS, 1956, 63 (02) :324-335
[5]   CHARACTERISTIC FREE APPROACH TO INVARIANT THEORY [J].
DECONCINI, C ;
PROCESI, C .
ADVANCES IN MATHEMATICS, 1976, 21 (03) :330-354
[6]   SYMPLECTIC STANDARD TABLEAUX [J].
DECONCINI, C .
ADVANCES IN MATHEMATICS, 1979, 34 (01) :1-27
[7]   Brauer algebras, symplectic Schur algebras and Schur-Weyl duality [J].
Dipper, Richard ;
Doty, Stephen ;
Hu, Jun .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (01) :189-213
[8]  
Donkin S., 1991, LINEAR MULTILINEAR A, V29, P113, DOI DOI 10.1080/03081089108818062
[9]   Polynomial representations, algebraic monoids, and Schur algebras of classical type [J].
Doty, S .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 123 (1-3) :165-199
[10]  
EISENBUD D, 1995, GRADUATE TEXTS MATH, V150