Bayesian Nonnegative Matrix Factorization With Dirichlet Process Mixtures

被引:12
作者
Li, Caoyuan [1 ,2 ]
Xie, Hong-Bo [3 ]
Mengersen, Kerrie [3 ]
Fan, Xuhui [4 ]
Da Xu, Richard Yi [2 ]
Sisson, Scott A. [4 ]
Van Huffel, Sabine [5 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
[2] Univ Technol Sydney, Fac Engn & Informat Technol, Ultimo, NSW 2007, Australia
[3] Queensland Univ Technol, ARC Ctr Excellence Math & Stat Frontiers, Brisbane, Qld 4001, Australia
[4] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2033, Australia
[5] Katholieke Univ Leuven, ESAT Stadius Div, Dept Elect Engn, B-3001 Leuven, Belgium
基金
澳大利亚研究理事会;
关键词
Dirichlet process; nonnegative matrix factorization; nonparametric Bayesian methods; Gaussian mixture model; variational Bayes; BCI COMPETITION 2003; EEG;
D O I
10.1109/TSP.2020.3003120
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nonnegative Matrix Factorization (NMF) is valuable in many applications of blind source separation, signal processing and machine learning. A number of algorithms that can infer nonnegative latent factors have been developed, but most of these assume a specific noise kernel. This is insufficient to deal with complex noise in real scenarios. In this paper, we present a hierarchical Dirichlet process nonnegative matrix factorization (DPNMF) model in which the Gaussian mixture model is used to approximate the complex noise distribution. Moreover, the model is cast in the nonparametric Bayesian framework by using Dirichlet process mixture to infer the necessary number of Gaussian components. We derive a mean-field variational inference algorithm for the proposed nonparametric Bayesian model. We first test the model on synthetic data sets contaminated by Gaussian, sparse and mixed noise. We then apply it to extract muscle synergies from the electromyographic (EMG) signal and to select discriminative features for motor imagery single-trial electroencephalogram (EEG) classification. Experimental results demonstrate that DPNMF performs better in extracting the latent nonnegative factors in comparison with state-of-the-art methods.
引用
收藏
页码:3860 / 3870
页数:11
相关论文
共 45 条
[1]  
[Anonymous], 2012, Journal of Machine Learning Research
[2]  
[Anonymous], 1985, Statistical Analysis of Finite Mixture Distributions
[3]  
[Anonymous], 2011, P 20 ACM INT C INF K
[4]   Characterization of a Benchmark Database for Myoelectric Movement Classification [J].
Atzori, Manfredo ;
Gijsberts, Arjan ;
Kuzborskij, Ilja ;
Elsig, Simone ;
Hager, Anne-Gabrielle Mittaz ;
Deriaz, Olivier ;
Castellini, Claudio ;
Mueller, Henning ;
Caputo, Barbara .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2015, 23 (01) :73-83
[5]   Sparse Bayesian Methods for Low-Rank Matrix Estimation [J].
Babacan, S. Derin ;
Luessi, Martin ;
Molina, Rafael ;
Katsaggelos, Aggelos K. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (08) :3964-3977
[6]   Neural correlates of sparse coding and dimensionality reduction [J].
Beyeler, Michael ;
Rounds, Emily L. ;
Carlson, Kristofor D. ;
Dutt, Nikil ;
Krichmar, Jeffrey L. .
PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (06)
[7]   The BCI competition 2003:: Progress and perspectives in detection and discrimination of EEG single trials [J].
Blankertz, B ;
Müller, KR ;
Curio, G ;
Vaughan, TM ;
Schalk, G ;
Wolpaw, JR ;
Schlögl, A ;
Neuper, C ;
Pfurtscheller, G ;
Hinterberger, T ;
Schröder, M ;
Birbaumer, N .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (06) :1044-1051
[8]   Variational Inference for Dirichlet Process Mixtures [J].
Blei, David M. ;
Jordan, Michael I. .
BAYESIAN ANALYSIS, 2006, 1 (01) :121-143
[9]   Robust Principal Component Analysis? [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Ma, Yi ;
Wright, John .
JOURNAL OF THE ACM, 2011, 58 (03)
[10]  
Cemgil Ali Taylan, 2009, Comput Intell Neurosci, P785152, DOI 10.1155/2009/785152